AUTOMOTIVE MANUFACTURER RISK ANALYSIS: meeting the automotive fuel economy standards

Stephen P. Bradiey
Aneel G. Karnani

HH AEROSPACE DESIGN CO., INC.
CIVIL AIR TERiINAL BEDFORD MA 01730

derartment of
TRANSPCRTATIOV
OCT:3 19/9

SEPTEMBER 1979
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADHINISTRATION
Office of Research and Development Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

17. Key Words
Fuel Economy Standards, Regulation of
Automobile Industry, Risk Analysis, Simu-
lation Model, Future of Automobile Indus-
try, Financial Projection, Product Mix,
Fuel Economy Measures.
18. Distribution Statement

This document is available to the U.S. public through the National Technical Information Service. Springfield, Virginia 22161

19. Security Clossif. (of this report)	20. Security Clossif. (of this page)		
Unclassified		\quad	Unclassified No. of Poyes
:---:			
150	\quad 22. Frice		

PREFACE

Most of the data used in this report are based on reports written by or sponsored by the U.S. Department of Transportation (DOT). The remaining data are based on publicly available reports in most cases. The personnel of the DOT/Transportation Systems Center, Cambridge, Massachusetts, provided valuable assistance in carrying out this study. Finally, throughout the study Professor William J. Abernathy of the Harvard Business School was very helpful in setting the direction of the study and critiquing the various findings.
METRIC CONVERSIOR FACTORS

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1
1.1 Market Demand and Consumer Preferences 3
1.2 Inflation 4
1.3 Manufacturing Costs 4
1.4 New Technologies to Improve Fuel Economy 4
1.5 Fuel Economy 4
1.5 Vehicle Price 5
1.7 Profit and Financial Ratios 5
2. OVERVIEW OF THE AFES MODEL 8
2.1 General 8
2.2 Assumed Manufacturers' Strategy 8
2.3 Overview of the Model 12
2.4 Marketing Module 14
2.5 Fuel Economy Module 14
2.6 Variable Costs Module 18
2.7 Capital Costs Module 20
2.8 Price Module 21
2.9 Financial Module 24
2.10 Proforma Generator Module 27
2.11 Assessing Risk 27
3. DETAILED DESCRIPTION OF THE AFES MODEL 30
3.1 General 30
3.2 Marketing Module 30
3.3 Fuel Economy Module 31
3.4 Variable Manufacturing Costs Module 35
3.5 Capital Costs Module 36
3.6 Price Module 38
3.7 Financial Module 41
3.8 Proforma Genrator Module 42
3.9 Use of the Model to Generate Risk Profiles 44
4. NOMINAL SCENARIO 47
4.1 General 47
4.2 Nominal Case 47
4.3 Optimistic and Pessimistic Case 56
4.4 Probabilistic Case 61
4.5 Technological and Manufacturing Risk 65
5. ANALYSIS OF DIFFERENT SCENARIOS 68
5.1 General 68
5.2 Increased Capital Expenditure 68
5.3 "Ideal" Scenario 74
5.4 Higher AFES 77
5.5 Foreign Penetration of Mid-size Car Market 79
5.6 Change in Market Share 82
5.7 Economic Risk 82

APPENDIX A	RESULTS UNDER THE NOMINAL SCENARIO	87
APPENDIX B	PROTOCOLS FOR THE COMPUTER PROGRAM	102
APPENDIX C	COMPUTER DATA FILES	105
APPENDIX D	COMPUTER PROGRAM	112
APPENDIX E	REFERENCES	136
APPENDIX F	REPORT OF NEW TECHNOLOGY	138

LIST OF ILLUSTRATIONS

Figure Page
2-1 AN OVERVIEW OF THE MODEL 13
2-2 CAPITAL COST CURVE 21
3-1 UNIFORM DISTRIBUTION BY MINIMUM AND MAXIMUM VALUE 45
3-2 TRUNCATED NORMAL DISTRIBUTION 46
4-1 NOMINAL CASE, FUEL ECONOMY ACHIEVED WITHOUT MIX 48 SHIFTS
\&-2 CAR PRICES BY SIZE CLASS 50
4-3 MARKET INDUCED SWITCHING IN CONSUMER BEHAVIOR 52
4-4 NOMINAL CASE RESULTS, FINANCIAL PERFORMANCE 53-55 1977-1985
5-1 INCREASED CAPITAL EXPENDITURE SCENARIO 70-73

LIST OF TABLES

Table Page
1-1 FLEET WEIGHTED FUEL ECONOMY OF NEW CAR SALES 1
3-1 SCHEDULE FOR DOWNSIZING 9
2-2 SCHEDULE FOR MATERIAL SUBSTITUTION 9
2-3 SCHEDULE FOR IMPLEMENTATION OF TECHNOLOGICAL 10 IMPROVEMENTS
2-4 U.S. AUTOMOBILE DEMAND AND FOREIGN MARKET SHARE 15 BY YEAR
2-5 FOREIGN PRODUCT MIX 15
2-6 MARKET SHARES OF THE DOMESTIC MANUFACTURERS 15
2-7 PRODUCT MIX 16
2-8 CURRENT FUEL CONSUMPTION 16
2-9 FUEL ECONOMY GAINS FROM TECHNOLOGICAL 17 IMPROVEMENT
2-10 REGULATORY STANDARDS 17
2-11 MANUFACTURING COSTS DATA 18
2-12 COSTS RELATED TO FUEL ECONOMY MEASURES 19
2-13 PRODUCT MIX DESIRED BY CONSUMERS 22
2-14 FINANCIAL DATA 25
2-15 FINANCIAL DATA 26
3-1 CURB WEIGHT 31
3-2 CURB WEIGHT AFTER DOWNSIZING 32
3-3 CURB WEIGHT AFTER MATERIAL SUBSTITUTION 32
3-4 PRODUCT MIX CHANGE 34
4-1 NOMINAL CASE, MARKET CHARACTERISTICS 49
4-2 NOMINAL CASE, FINANCIAL POSITION-1985 56
4-3 COST RELATED TO FUEL ECONOMY MEASURES 57
4-4 COSTS RELATED TO FUEL ECONOMY MEASURES 57
4-5 POSITION IN 1985, COMPANY G 58
4-6 POSITION IN 1985, COMPANY F 58
4-7 POSITION IN 1985, COMPANY C 59
4-8 POSITON IN 1985, COMPANY A 59
4-9 FUEL ECONOMY GAINS FROM TECHNOLOGICAL 61 IMPROVEMENTS
4-10 COSTS RELATED TO FUEL ECONOMY MEASURES 62
4-11 FUEL ECONOMY GAINS FROM TECHNOLOGICAL 63 IMPROVEMENTS
4-12 CAPITAL COSTS RELATED TO FUEL ECONOMY MEASURES 63
4-13 ADDITIONAL VARIABLE MANUFACTURING COSTS RELATED 64 TO FUEL ECONOMY MEASURES
4-14 LONG-TERM DEBT IN 1985 64
4-15 DEBT POSITION IN 1985 66
5-1 CUMULATIVE CAPITAL EXPENDITURES FOR 1978-1985 69
5-2 INCREASED CAPITAL EXPENDITURE SCENARIO 69
5-3 MARKET CHARACTERISTICS IN 1985 75
5-4 FIN ANCIAL POSITION IN 1985 76
5-5 MARKET CHARACTERISTICS IN 1985 77
5-6 FINANCIAL POSITION IN 1985 77
5-7 HIGHER AFES SCENARIO 78
5-8 FINANCIAL POSITION IN 1985 80
5-9 FOREIGN PENETRATION OF MID-SIZE CAR MARKET 81 SCENARIO
5-10 POSITION IN 1985 82
5-11 POSITION IN 1985, COMPANY G 84
5-12 POSITION IN 1985, COMPANY F 84
5-13 POSITION IN 1985, COMPANY C 85
5-14 POSITION IN 1985, COMPANY A 85
5-15 CHANGE IN LONG-TERM DEBT POSITION IN 1985 86 COMPARED TO THE NOMINAL CASE

1. INTRODUCTION

On December 27, 1975, the Energy Policy and Conservation Act (Public Law 94-163) was passed by Congress requiring all automobile manufacturers to achieve a schedule of improved fuel eçonomy for new car sales in the United States. The Act requires that the fleet-weighted average fuel economy, in miles per g llon, for each manufacturer, meet or exceed a specified minimum standard that inc eases over time. The new minimum standards require that the fleet-weighted average fuel economy nearly double over roughly a ten year period. Table $1-1$ gives the standards initially established in the Act.

TABLE 1-1 FLEET-WEIGHTED FUEL ECONOMY

OF NEW CAR SALES

Actual	1974	14 mpg .
Required	1978	18 mpg
	1979	19 mpg
	1980	20 mpg
	1981-84	build up to the 1985 standard
		to be determined by the Secretary of Transportation
	1985	27.5 mpg

This study is concerned with the extraordinary commercial risks placed on the automobile manufacturers by the addition of these regulatory requirements. The problem of evaluating the risks inherent in these regulations is approached through the use of a methodology commonly known as risk analysis.

Risk analysis is a systematic approach which can be used to analyze complex decision situations involving uncertainty. Risk analysis, in its mast simple form, involves a computer simulation of the business environment for the purpose of evaluating a specific strategy explicitly taking into account the mast important uncertainties. The
uncertainties are combined using Monte Carlo simulation techniques to obtain risk profiles, or probability distributions, of key summary measures of performance. Thus, one of the contributions made by this study is methodological in nature, as the study should be helpful in understanding how to apply risk analysis to other similar situations.

The main purpose of this study is to develop a risk analysis model of the automobile industry in order to assess the impact of the Automotive Fuel Economy Standards (AFES) on each of the manufacturers in the industry. Data that approximates the characteristics of each of the U.S. automobile nanufacturers are used to illustrate the application of the model. The chief contribution of this study is to take different bits and pieces of data, mostly from several different reports written or sponsored by DOT, ${ }^{1}$ and to use these data to arrive at an analysis of the impact of the AFES on the automobile industry. This approach serves to highlight the fact that in order to analyze the impact of the AFES, one must understand the various interrelationships among the different components of the situation under study and the various pieces of data available. This study formulates several of these interrelationships in mathematical terms and integrates them into a risk analysis model to analyze the impact of the AFES. The results yield some insights into how different aspects of the situations interact with one another.

In order to structure the risk analysis for the automobile industry, uncertainty has been categorized into two classes: contextual (or exogenous), and endogenous. The contextual uncertainty arises from two sources: (1) economic conditions (overall business), and (2) marketing environment (automotive sales). The sources of endogenous uncertainty include technology, warranty*, and manufacturing conditions. While there are several areas of uncertainty, the overall impact of all of these results in financial performance. The objective of this analysis, therefore, is to assess the effect of the AFES on the financial performance of each of the manufacturers, while taking into account the uncertainties mentioned above.

In this study a conditional risk analysis is carried out. That is, each situation is analyzed conditional on the contextual uncertainty being resolved. Fixed values are assumed for the variables which are the source of the contextual uncertainty; that is,

[^0]
1. INTRODUCTION

On December 27, 1975, the Energy Policy and Conservation Act (Public Law 94-163) was passed by Congress requiring all automobile manufacturers to achieve a schedule of improved fuel economy for new car sales in the United States. The Act requires that the fleet-weighted average fuel economy, in miles per g llon, for each manufacturer, meet or exceed a specified minimum standard that inc reases over time. The new minimum standards require that the fleet-weighted average fuel economy nearly double over roughly a ten year period. Table 1-1 gives the standards initially established in the Act.

TABLE 1-1 FLEET-WEIGHTED FUEL ECONOMY
 of new Car sales

Actual	1974	14 mpg .
Required	1978	18 mpg
	1979	19 mpg
	1980	20 mpg
	1981-84	build up to the 1985 standard
		to be determined by the Secretary
	1985	$27.5 \text { mpg }$

This study is concerned with the extraordinary commercial risks placed on the automobile manufacturers by the addition of these regulatory requirements. The problem of evaluating the risks inherent in these regulations is approached through the use of a methodology commonly known as risk analysis.

Risk analysis is a systematic approach which can be used to analyze complex decision situations involving uncertainty. Risk analysis, in its mast simple form, involves a computer simulation of the business environment for the purpose of evaluating a specific strategy explicitly taking into account the mast important uncertainties. The
uncertainties are combined using Monte Carlo simulation techniques to obtain risk profiles, or probability distributions, of key summary measures of performance. Thus, one of the contributions made by this study is methodological in nature, as the study should be helpful in understanding how to apply risk analysis to other similar situations.

The main purpose of this study is to develop a risk analysis model of the automobile industry in order to assess the impact of the Automotive Fuel Economy Standards (AFES) on each of the manufacturers in the industry. Data that approximates the characteristics of each of the U.S. automobile nanufacturers are used to illustrate the application of the model. The chief contribution of this study is to take different bits and pieces of data, mostly from several different reports written or sponsored by DOT, ${ }^{1}$ and to use these data to arrive at an analysis of the impact of the AFES on the automobile industry. This approach serves to highlight the fact that in order to analyze the impact of the AFES, one must understand the various interrelationships among the different components of the situation under study and the various pieces of data available. This study formulates several of these interrelationships in mathematical terms and integrates them into a risk analysis model to analyze the impact of the AFES. The results yield some insights into how different aspects of the situations interact with one another.

In order to structure the risk analysis for the automobile industry, uncertainty has been categorized into two classes: contextual (or exogenous), and endogenous. The contextual uncertainty arises from two sources: (1) economic conditions (overall business), and (2) marketing environment (automotive sales). The sources of endogenous uncertainty include technology, warranty*, and manufacturing conditions. While there are several areas of uncertainty, the overall impact of all of these results in financial performance. The objective of this analysis, therefore, is to assess the effect of the AFES on the financial performance of each of the manufacturers, while taking into account the uncertainties mentioned above.

In this study a conditional risk analysis is carried out. That is, each situation is analyzed conditional on the contextual uncertainty being resolved. Pixed values are assumed for the variables which are the source of the contextual uneertainty; that is,

[^1]economic and market variables. Setting the values of these variables is called "defining a scenario." Conditional on each scenario, several different cases can then be examined under certainty using sensitivity analysis. This involves changing the assumptions concerning the values of the variables which are the source of the endogenous uncertainty and analyzing the impact. In addition, it can also be assumed that only the probability distributions of the variables, which are the source of the endogenous uncertainty, are known; this case is called the "probability case." The model then produces risk profiles, or probability distributions, for various summary measures of performance for each manufacturer. The reason for carrying out the analyses conditional on a scenario is so that the contextual uncertainty does not swamp out the risks imposed on the manufacturers that directly result from attempting to meet the AFES.

The first step in the approach is to formulate a set of relationships, or a model, to determine the financial performance of the manufacturers, given certain assumptions about their strategy for meeting the AFES, their current and future environments, and other factors beyond their control. In other words, the risk analysis model is designed to estimate the manufacturers' performance, given assumptions about their specific strategy, and about the resolution of the contex tual and endogenous uncertainties.

Designing such a model requires a large amount of data. It should be emphasized that the objective of this study is not to generate data, but rather to develop a model and to perform a risk analysis using the data already available. Thus, almost all the data used in this study is from reports written or sponsored by DOT. Some data is based on publicly available documents ${ }^{2,3,4}$, and ${ }^{5}$, and on consultations with industry experts.

In order to give some of the spirit of the risk analysis model that is developed in Sections 2 and 3 , some of the underlying assumptions of the approach are pointed out here.

1.1 Market Demand and Consumer Preferences

In the analysis, the aggregate demand projections, by model size, from 1976 to 1985, are
forecast by the Wharton Econometric model of the U.S. automobile Industry. These projections account for demographic variations in the U.S. population over this period, which result in a slight upward movement in the desired size of cars. The Wharton projection does not anticipate any increase in "fuel economy consciousness" on the part of the consumer, which would be manifested as a greater preference for smaller cars than projected by the WEFA model. ${ }^{6}$

1.2 Inflation

The analysis is carried out in 1976 dollars. This is equivalent to assuming that price adjustments for wages, capital goods, materials, services, and final product prices are uniform. That is, inflationary increases in any factor are passed through uniformly.

1.3 Manufacturing Costs

Manufacturing costs are assumed to conform with the industry's historical experience, except for increases due to the adoption of new technological options to improve fuel economy. Increased manufacturing costs resulting from other regulatory requirements such as pollution control and safety are not included except in that they reduce fuel efficiency.

1.4 New Technologies to Improve Fuel Economy

Each manufacturer is scheduled to introduce technologies to improve fuel economy according to a time table suggested in U.S. Department of Transportation data. ${ }^{7}$ These are all available technologies including downsizing, material substitution, improved power train components, lubricants, accessories, aerodynamic body configurations, new tires, and so forth.

1.5 Puel Economy

The corporate fleet-weighted average fuel economy achieved by each manufacturer is determined by the size of cars produced, and the technological options implemented. The mix of cars produced for sale each year is adjusted by the risk analysis model to strictly meet the legally required fuel economy level for that year. The model assumes that each manufacturer will satisfy the AFES in every year. The mix of car sizes produced by each manufacturer starts in 1977 with his historical product mix. The model determines the amount of mix shift, if any, that is needed to meet the legally required fleet-weighted average fuel economy for each year.

1.6 Vehicle Price

The sale prices of various size-class cars are computed by the model, with the assumption that the price differential between the various size-class cars is such that the market is cleared. It is assumed that the average car price is constant over time, with some qualifications which are discussed later. Both these assumptions, which are congruent with the WEFA model, are discussed in greater detail in Section 2.

However, it slould be pointed out here, that it is possible to make alternative assumptions about the pricing process. For example, one could assume that General Motors sets the prices for the various size-classes on a cost plus mark-up basis, and the other manufacturers set the same prices as General Motors. That is, General Motors is assumed to be the price leader of the industry. This assumption would not be consistent with the WEFA model. Since the demand projections from the WEFA model are used, it is appropriate, in order to be internally consistent, that the assumptions about the pricing process be congruent with the WEFA model.

1.7 Profit and Financial Ratios

Given production volume, sales mix, manufacturing overhead and fixed cast, and sales t. prices, the model computes after-tax profit for each manufacturer. Cash flow is determined by capacity expansion (if any), investment in new technological features, depreciation, debt charges, and so forth. Long-term debt is allowed without limit to
balance the cash requirements. For this reason, the long-term debt position provides a useful overall indicator of a given manufacturer's risk position.

The four major U.S. automobile manufacturers are obviously very complex organizations. It is clearly impossible to capture the full complexity of their operations in a model of any reasonable size. However, the main difficulty in designing a model such as the one developed for this study is that all the relevant data is not available. Much of the relevant data is confidential and not released by the companies.

In this study four major U.S. automobile manufacturers labelled G F C and A are considered. Manufacturers G F C and A are as close approximations to the North American passenger car businesses of General Motors, Ford, Chrysler, and American Motors respectively, as possible, given the data available to us and the objectives of the study.

Because of the approximations made in the data input to the model, the results generated by the model should be interpreted with some caution. The model developed in this study should be used to analyze the relative impact on the manufacturers due to the AFES, given certain assumptions about the environment faced by the manufacturers. "Relative impact" refers to either the impact on a manufacturer relative to that of the other manufacturers or its own initial position.

The foreign manufacturers who market cars in the U.S. have been aggregated and are considered as just one manufacturer. No attempt is made to assess the impact of the AFES on the foreign manufacturers. For all the manufacturers considered in this analysis, the concern is only with their U.S. passenger car operations, and not the whole corporation. For the sake of semantic simplification, the term "manufacturer" is used to mean the U.S. passenger car operations of the automobile company.

An overview of the AFES model and most of the basic data are described in Section 2 while a more detailed description of the model including the appropriate equations is given in Section 3. The AFES model has been written in FORTRAN and is implemented on the Harvard Business School PDP-10 computer. The computer output from one particular scenatio is given in Appendix A. Some instructions for using the computer
program are given in Appendix B. The data files in the format required by the computer program are given in Appendix C. Finally, the computer program itself is given in Appendix D.

In Section 4, several cases under the Nominal scenario are analyzed, that is, the scenario uses the one-point currently available estimates for the values of the contextual variables. In Section 5, several alternative scenarios are analyzed in an attempt to understand the effects of different AFES, market, and economic conditions.

2. OVERVIEW OF THE APES MODEL

2.1 General

The objective of the AFES model is to estimate the financial performance of each of the manufacturers, given assumptions about their strategy for meeting the Automotive Fuel Economy Standards (AFES), and about the resolution of various contextual and endogenous uncertainties. In order to accomplish this objective, specific relationships among a large number of variables and parameters have to be identified and formulated. These relationships can be conveniently categorized into seven modules. The modular design of the AFES model makes it easy to change, if required, the relationships embodied in the model.

In this section the assumed manufacturers' strategy is described, and then a brief overview of each of the modules is presented in turn. The purpose of this section is to develop an intuitive understanding of the approach and data assumptions, while a more detailed deseription of the model is contained in Section 3.

2.2 Assumed Manufacturers' Strategy

It is assumed that the manufacturers will implement various technological ontions in order to meet the AFES. ${ }^{8}$ These fuel economy measures include downsizing, material substitution, and technological improvements in transmissions, lubricants, accessories, and aerodynamic drag. The schedules for implementing these measures are manufacturer specific and are given in Tables $2-1$ to $2-3$. If the fleet-weighted average fuel economy (in mpg) for a manufacturer, after implementing the above fuel economy measures, is equal to or exceeds the AFES for that year, then the manufacturer is assumed to have produced the same product mix as in the previous year. However, if the fleet-weighted average fuel economy is below the AFES for that year, then the manufacturer is assumed to have changed the product mix so as to just meet the AFES. That is, the manufacturer will produce a larger proportion of small cars in order to
meet the AFES. Since the consumers may prefer a different product mix from the one actually produced by the manufacturers, it is assumed that the manufacturers will have to change car prices, either directly or indirectly, in order to sell the product mix actually produced.

TABLE 2-1. SCHEDULE FOR DOWNSIZING

Year of Downsizi $1 g$				
Full-size		Mid-size		Com;act
1977			Subcompact	
1979		1978		1979

Source: Based on "Data Analysis for 1981-1984," Document 2, Vol. I. ${ }^{9}$

TABLE 2-2. SCHEDULE FOR MATERIAL SUBSTITUTION

Year of Implementing Material Substitution

	Full-size	Mid-size	Compact	Subcompact
Company G	1982	1986	1984	1986
Company F	1984	1985	1983	1984
Company C	1986	1983	1986	1983
Company A	-	1984	1985	1986

Source: Based on "Data Analysis for 1981-1984," Document 2, Vol. I. ${ }^{9}$

TABLE 2-3
SCHEDULE FOR IMPLEMENTATION OF TECHNOLOGICAL IMPROVEMENTS

Percentage of Cars Manufactured with the Improvernents
$\frac{1981}{\substack{\text { Company G }}} \underline{1982} \quad \underline{1984}$
Automatic transmission*
Manual transmission
Lubricants
Accessories
Aerodynamic drag
Rolling resistance

20	40	65	90	93
7	7	7	7	7
20	40	60	80	100
20	40	60	80	100
60	70	80	80	80
20	40	60	80	80

Company F

Automatic transmission*	$2 . j$	40	50	75	
Manual transmission	5	10	15	15	85
Lubricants	20	40	60	80	15
Accessories	20	40	60	80	100
Aerodynamic drag	60	70	80	80	80
Rolling resistance	20	40	60	80	80
	Company C				

Automatic transmission*	$\mathbf{0}$	10	15	70	85
Manual transmission	0	5	15	15	15
Lubricants	20	40	60	80	100
Accessories	0	20	40	60	80
Aerodynamic drag	30	60	70	80	80
Rolling resistance	20	40	60	80	80

Company A

Automatic transmission*	0	0	0	25	40
Manual transmission	0	0	5	10	13
Lubricants	20	40	60	80	100
Accessories	0	0	20	40	60
Aerodynamic drag	20	40	60	70	80
Rolling resistance	20	40	60	70	80

[^2]There are a few other alternatives available to the manufacturers which are not directly considered in the above assumed strategy. (1) Reduction in acceleration performance could also be used to improve fuel consumption. This will probably take place on average with a move toward smaller engines, but no data are available to estimate that effect. (2) If the manufacturers have to change their product mix, they would use increased promotion and advertising, in addition to pricing, to sell the changed product mix. This would have the effect of increasing the revenues while simultaneously increasing the costs. Assuming that the gross margins woulc remain about the same, our conclusions would be unchanged. (3) The manufacturers could pursue technological options such as the diesel or stratified charge engines; ${ }^{10}$ however, in the time frame of this analysis, the market penetration of these alternatives is assumed to be quite limited.

To the extent that a manufacturer does produce cars with diesel or stratified charge engines, his product mix will have to be changed less than the change predicted by the model. At the same time, this would have an effect on his capital costs and manufacturing costs. For Companies G and F, which would probably produce their own engines, this would have the effect of increasing their capital costs. While for Companies C and A, which might buy the diesel or stratified charge engines, this alternative could have the effect of decreasing their capital costs at the expense of increasing their manufacturing costs. Since data is not available on schedules for implementation of these options, it is not possible to include them in the model. However, given the implementation schedules and cost data, it would be straightforward to extend the model to consider diesel and stratified charge engines.

The final element of the assumed manufacturers' strategy is that there will be no increase in equity financing. (In fact, Chrysler Corporation is attempting to raise equity capital at this time; however, it is not as yet clear whether or not it will be successful.) Thus, the capital investment for implementing the fuel economy measures and other capital investments are assumed to be financed out of retained earnings and increases in long-term debt. If a manufacturer generates more cash than he uses, then the net cash inflow is used to retire long-term debt. If there is no long-term debt, then the net cash inflow is assumed to be invested in interest bearing securities. In reality,
an automobile manufacturer will undoubtedly neither reduce long-term debt very much nor invest the excess cash flow in securities. If one division of a corporation is a net generator of cash, then that cash will most certainly be used to finance investments in other programs throughout the company maintaining the debt/equity ratio for the company close to its historical level. However, since this analysis considers only the U.S. passenger car operations for each automobile manufacturer, the above treatment is a reasonable way of keeping track of the cash use/cash generation ability of a company. The reduction in long-term debt and the investment in interest-bearing securities should be thought of as investment in future technologies or other programs within the company.

2.3 Overview of the Model

The model has been designed in a modular fashion to facilitate changing the assumptions employed in any of its parts. There are seven main modules, each of which is described below. The seven modules and the flow of information between the modules are schematically represented in Figure 2-1.

It should be pointed out that the information flow depicted in Figure 2-1 is from the top down without feedback loops requiring the complex simultaneous solution of different modules. The basic assumption of the AFES model is that the industry responds to market demand as much as possible, given the constraint imposed by AFES, and that the price differentials between different size-class cars are determined by a market clearing process. The prices of various size-class cars are adjusted to sell the product mix that is produced in order to meet the AFES. This assumption is explored in greater detail later when the Price Module is discussed.

FIGURE 2-I. AN OVERVIEW OF THE MODEL

2.4 Marketing Module

The input to the Marketing Module consists of the total U.S. automobile demand and foreign market share by year (Table 2-4), foreign product mix (Table 2-5) and the domestic manufacturers' market shares (Table 2-6). It is assumed that the foreign manufacturers' product mix and the domestic manufacturers' market shares remain constant over the years. This assumption has been made because there are no estimates available as to how these factors might change over time; and also, this assumption appears to be a reasonable approximation. However, given such estimates, it would be straightforward to change the model to eliminate this assumption. Moreover, one of the scenarios analyzed in Section 5 is, in fact, one in which the foreign manufacturers change their product mix. The output from this module consists of the sales volume for the foreign manufacturers and fol each domestic manufacturer by year.

2.5 Fuel Economy Module

The Fuel Economy Module takes in as input the following data for each manufacturer: previous year's product mix (Table 2-7 for year 1976), current fuel consumption by size class (Table 2-8), and schedule for implementing the various fuel economy measures. The parameters input to this module are: the impact on fuel consumption due to the various fuel economy measures (Table 2-9), the schedule of AFES, and the schedule of impacts on fuel consumption due to emission control and safety regulations (Table 2-10). The module calculates the fleet-weighted average fuel economy for each manufacturer using the previous year's product mix. If a manufacturer meets the AFES for that year, his product mix is not changed from the previous year's product mix. If the manufacturer does not meet the AFES for that year, his product mix is changed to meet the AFES. It is assumed that the manufacturer will want to minimize the change necessary in order to comply with the AFES. Furthermore, it is assumed that the proportion shifted from a given size class to the next smaller size class is the same for all size classes. The output from the Fuel Economy Module is the new product mix for each manufacturer by year.

TABLE 2-4. U.S. AUTOMOBILE DEMAND AND FOREIGN MARKET SHARE BY YEAR

Year

1977
1978
1979
1980
1981
1982
1983
1984
1985

U.S. Automobile

Demand* (million units)

Foreign
Market Share**
11.3
20.0\%
$11.6 \quad 19.4$
11.5
11.7
18.8
18.2
12.7
17.6
12.5
17.0
12.2
16.4
12.3
15.8
12.4
15.2
*From the Wharton EFA Automobile Demand Model. ${ }^{6}$
**Based on remarks in "Data Analysis for 1981-1984, Passenger Automobile Fuel Economy Standards," Document I.

TABLE 2-5. FOREIGN PRODUCT MIX

	Full-size		Mid-size	
	0	0		Compact Nominal Scenario

TABLE 2-6. MARKET SHARES OF THE DOMESTIC MANUFACTURERS

Company G	Company F	Company C	Company A
56.48%	25.77%	15.39%	2.36%

TABLE 2-7. PRODUCT MIX
(in \%)
(Year 1976)

	Full-Size	Mid-size	Compact	Subcompact
Foreign	0.0	0.0	20.0	80.0
Company G	27.42	41.06	18.2	13.32
Company F	23.72	23.82	22.4	30.06
Company C	13.38	24.72	36.1	25.78
Company A	0.0	14.78	66.55	18.67

Source: "Data Analysis for 1981-1984," Document 2, Vol. I. ${ }^{9}$

TABLE 2-8. CURRENT FUEL CONSUMPTION (in mpg)

| | Full-size | | Mid-size | | Compact |
| :--- | :---: | :---: | :---: | :---: | :---: | | Subcompact |
| :--- |
| |
| Company G |

Source: "Data Analysis for 1981-1984," Document 2, Vol. I. ${ }^{9}$

TABLE 2-9. FUEL ECONOMY GAINS FROM TECHNOLOGICAL IMPROVEMENTS

Option	Nominal values*	Optimistic values**	Pessimistic values**
Automatic transmission	10\%	11.1 \%	6.88\%
Manual transmission	5	5.63	4.38
Lubricants	2	2.25	1.0
Accessories	2	2.63	1.37
Aerodynamic drag	4	4.25	2.33
Rolling resistance	3	3.85	2.22
*From "Rulemaking Sup **Based on judgment	," NHTSA try exper	July 1977 .?	

TABLE 2-10 REGULATORY STANDARDS

Year

1977
1978
1979
1980
1981
1982
1983
1984
1985

17.0
18.0
19.0
20.0
22.0
24.0
26.0
27.0
27.5 Automotive Fuel (in mpg)
0.0
0.0
0.0
0.0
0.0
0.0

Penalty due to Safety Standards** Economy Standard*
0.0
0.0
$0.0 \quad 0.0$
$0.0 \quad 0.0$
$0.0 \quad 1.0$
1.0
1.0
1.0
1.0
*From the "Rulemaking Support Paper," NHTSA, July 1977^{7}
**Based on remarks in "Rulemaking Support Paper", NHTSA, July 1977^{7}

2.6 Variable Costs Module

The input to this module includes the following information for each manufacturer: material cost per pound (Table 2-11), direct labor cost per car (Table 2-11), and the schedule for implementing the various fuel economy measures. The change in variable cost due to implementing the technological improvements (Table 2-12) is also input to the module. In addition, the outputs from the Marketing and Fuel Economy modules are used by this module to calculate the total variable cost for each manufacturer by year.

TABLE 2-11 MANUFA :TURING COSTS DATA

	Material cost per 1 b.	Labor cost
Company G	0.5093	$\frac{\text { per car }}{1175.0}$
Company F	0.715	775.0
Company C	0.8305	1050.0
Company A	0.858	713.0

Source: From "Monthly Prog"ess Report No. 4," HH Aerospace Design Company, Inc., under contract No. D. JT-TSC-1333, December 1977. ${ }^{11}$

TABLE 2-12 COSTS RELATED TO FUEL ECONOMY MEASURES

	(Nominal Data) Capital cost per car	Additional Variable manufacturing cost
	1000	$*$
Downsizing	50	$*$
Material substitution	500	45
Automatic transmission	25	25
Manual transmission	0	5
Lubricants	25	10
Accessories	0	10
Aerodynamic drag	0	35
Rolling resistance		
*Effect on manufacturing costs depends on the weight reduction achieved.		

Data regarding the effect of car size on material cost per pound was not available. Nor was it possible to obtain data about the effect of downsizing and material substitution on material cost per pound. After consultation with industry experts and TSC, it was decided to make the following assumptions concerning variable material costs: for a given manufacturer, the material cost per pound is the same for all size-classes of cars, but the material cost per pound is different for different manufacturers. Downsizing does not change the material cost per pound, but material substitution increases the cost per pound by 7 percent.

As for labor costs, once again, the effect of car size on labor costs is not documented. After consultation with industry experts, it was decided to assume that the direct labor cost for a subcompact car is nine-tenths of that of a full-size car, with the other size classes in between.
hodule calculates the total variable cost for a manufacturer to be the sum of al costs, direct labor costs, and the additional variable costs for implementing the various fuel economy measures.

2.7 Capital Costs Module

The capital costs module calculates the total capital investment related to fuel economy measures for each manufacturer by year. Fuel economy measures include downsizing, material substitution, and technological improvements in transmission, lubricants, accessories, and aerodynamic drag. The inputs to this module include the schedule for implementing the fuel economy measures for each manufacturer, and the capital cost per car for implementing these measures (Table 2-12). The outputs from the Marketing and Fuel Economy modules are also used.

The module calculates the capital cost of, say, downsizing, by multiplying the number of downsized cars produced by the capital cost of downsizing per car. The justification for this procedure is not that there do not exist economies of scale, but rather that the economies of scale are exhausted before the production levels achieved by any of the manufacturers. The capital costs for any of the measures probably behave as illustrated in Figure 2-2. That is, once the number of cars produced reaches x , the capital cost per car decreases very slowly as the number of cars produced increases. The assumption is that the economies of scale at the margin are not significant for the capacity modifications represented by the model.

DOT, in its reports, assumes that the capital cost per car of implementing any of the fuel economy measures is the same for all manufacturers. This is not really the case since different manufacturers have different degrees of vertical integration. A manufacturer with a low degree of vertical integration will have lower capital costs but higher variable costs of production. Since data on the tradeoff relationship between capital costs and variable production costs is not publicly available, DOT's assumption of equal capital cost per car for all manufacturers was adopted. However, while the results of the model are intepreted, it should be remembered that a manufacturer has the option of reducing capital investment at the expense of increasing the variable cost of production.

FIGURE 2-2. CAPITAL COST CURVE

2.8 Price Module

The aim of the Price Module is to calculate car prices by size class by year. First, it should be noted that car price means the base sticker price plus the sticker price for options sold on an "average" car in that size class. It is also assumed that the prices by size class are the same for all manufacturers.

Almost all of the concepts, assumptions and data used in this module are adapted from the WEFA model ${ }^{6}$. The central assumption is that the price differential between different size classes is determined by consumer preferences. Consumers prefer a product mix which changes over time, and is determined by various demographic factors (e.g., age distribution of the population, number of families with more than a certain number of children), and economic factors (e.g., income of an average household). The product mix preferred by consumers for the next several years is that predicted by the WEFA model (Table $2-13$). If the manufacturers collectively produce a product mix
which is the same as that demanded by the consumers, then the price differential between size classes is as given by the WEFA model. However, if the product mix produced is different from that demanded by the consumers, then the price differential needed to sell this product mix is different and can be calculated using a set of equations contained in the WEFA model. These equations pertain to the price crosselasticities between size-classes.

TABLE 2-13 PRODUCT MIX DESIRED BY CONSUMERS

	(in \%)			
Year	Full-size		Mid-size	Compact

Source: The Wharton EFA Automobile Demand Model. ${ }^{6}$

The exact mathematical procedure for using these equations is rather complicated and is explained in detail in Section 3. Here an attempt is made to describe the procedure in brief, intuitive terms. First, however, the concept of "capitalized cost per mile" must be introduced.

A person buying a car will pay, over the life of that car, for items such as: initial price of the car, financing charges, insurance, gas, maintenance, parking and tolls, etc. The discounted present value of all these costs is called the capitalized cost for the car. Similarly, the person will drive the car a certain number of miles per year over the life of the car. The WEFA model salculates the discounted present value of the miles driven by using a "social discount rate." Then dividing the capitalized cost by the discounted present value of miles driven yields the "capitalized cost per mile." It is obvious that the capitalized cost per mile is differnt for different size cars, that larger cars have higher capitalized cost per mile.

It follows from basic economics, that if the capitalized cost per mile for a particular size-class of cars is increased relative to the other size-classes, then the demand for that particular size-class of cars will decrease. The equations from the WEFA model are used to calculate the increase or decrease in the capitalized cost per mile of each size-class car such that the quantity produced is equal to the quantity demanded for each size-class of cars. Given the increase or decrease in the capitalized cost per mile, it is possible to calculate the required price of a new car for each size-class.

One more assumption is needed to make this procedure work. The equations from the WEFA model yield results about price differentials, that is about the price of a new car in a given size-class relative to new car prices for other size-classes. To be able to calculate the price of a new car for each size class, the average car price for each year in the analysis must be estimated. ${ }^{12}$ It is assumed that the average car price remains constant over time. That is, if large cars become more expensive, then the small cars will become less expensive. This assuption is congruent with the assumptions made in the WEFA model. The WEFA model assumes that car prices change only because of inflation. Since, in this analysis, inflation is not considered, this is equivalent to assuming that average car prices remain constant over time.

It is also assumed that the increase in manufacturing cost due to other regulatory requirements, say for pollution control and safety, is passed on to the consumer; that is, the car prices are increased by an amount equal to the increase in cost of manufacture due to these regulations. It is also necessary to assume that this increase in car prices
does not decrease the total demand for cars. This assumption is required because of the nature of the WEFA model. The WEFA model considers the average car price as being given exogenously and then projects the total automobile demand assuming this given average car price. While making assumptions about the average car price, it does not consider the impact of government regulation regarding pollution control and safety.

To summarize, the Fuel Economy module calculates the product mix for each manufacturer such that the AFES are met; by aggregating across the manufacturers, the product mix produced by the industry can be obtained. The WEFA model estimates the product mix desired by consumers based on demographic and economic factors. Then, using equations involving price cross-elasticities from the WEFA model, the Price module calculates the new car prices by size-class such that the product mix produced by the industry is just sold.

2.9 Pinancial Module

The objective of this module is to calculate for each manufacturer various financial line items, such as total capital investment, depreciation, amortization, and dividends paid. Total capital investment is the sum of capital investment related to fuel economy measures, which is calculated by the Capital Costs Module, and other capital investments. It is assumed that "other capital investments" for a manufacturer are constant over time. This assumption is in keeping with the spirit of some of the work done by DOT which assumes that the total capital investinent for each manufacturer is constant over time. ${ }^{13}$ It would be preferable to use a more sophisticated projection of capital expenditures; however, such projections are not available.

It should be emphasized that financial data in this module pertains only to the U.S. passenger car operations of the automobile companies. Since such data is not released by the companies, the data has been collected from various sources $14,15,16,17$ and 18, including DOT reports 13 and 19 and reports sponsored by DOT. ${ }^{11}$ In addition, some of the required data was derived from the 10 K Reports of the companies. ${ }^{20}$

Assets have been classified into four categories: (1) land and buildings, (2) machinery and equipment, (3) toolings, and (4) other. The "other" category is intended to cover essentially working capital, which is assumed to remain constant over time. Land and buildings and machinery and equiment are depreciated on a straight line basis; while toolings are also amortized on a straight-line basis. In reality, the manufacturers undoubtedly use some form of accelerated depreciation for tax purposes, but straight line depreciation is appropriate for shareholder reporting. In addition, any increase in accuracy that would result from a more complex treatment of depreciation would not be sufficient to warrant the increased complexity.

Liabilities have been classified into equity capital, retained earnings, and long-term debt. As mentioned earlier, equity capital is assumed to remain constant over time. In addition, it is assumed here that dividends are paid on equity capital and remain constant over time; the dividend rate is different for different manufacturers. Interest is charged on long-term debt. If the manufacturer has retired all long-term debt, and has invested in interest bearing securities, then this module calculates the interest earned. In some of the computer reports, investment in securities appears as negative long-term debt. The financial data used to initiate the model is given Table 2-14 and that used for future projections is given in Table 2-15.

> TABLE 2-14 FINANCIAL DATA* (as of December 31, 1976) (million \$)

Company G Company F Company C Company A
Book value of land and buildings
1639.0
869.0
517.4
43.6

Book value of M/C and equipment

Book value of tooling

Book value of other assets
2146.0
1143.8
307.3
80.1
391.2
451.2
320.4
20.9

Equity capital	393.8	121.7	233.7	39.2
Debt capital	551.2	726.9	650.5	91.3
Retained earnings	7027.0	3538.8	1514.1	211.4

*For U.S. passenger car operations only.
Source: Derived from 10 K Reports issued by the companies. 20

TABLE 2-15. FINANCIAL DATA
(Used for future projections)
(million \$)

Company G Company F Company C Company A

Annual investment in land and buildings

Annual investment in M/C and equipment

Annual investment in tooling

Depreciation rate for land and buildings

Depreciation rate for M / C and equipment

Amortization rate for tooling

Interest rate on debt capital

Effective tax rate
Dividend rate
154.7
31.4
19.3
4.3
278.0
87.4
39.4
10.7
460.0
136.0
72.3
16.0
4%
3%
3 \%
3%
8.3
6.66
7.69
7.0

$$
50.0
$$

50.0
33.3
33.3
25.0
7.8
7.8
7.8
7.8
46.9
208.5
111.5
39.3
30.0
45.6
5.0

20

2.10 Proforma Generator Module

This module takes as input the output from all the previous modules. It calculates the various costs which are usually classified as being fixed costs. Interest, depreciation and amortization are calculated using straight-line depreciation by the Financial module. Retirement and non-income taxes are considered to be fixed for each manufacturer. Selling and Administration, Research and Development, and Maintenance, Repair and Rearrangement are considered to be semi-variable that is, they each have a fixed component, and a variable component which depend on the sales volume. The fixed and variable components were estimated for each company based on historical data using simple regression.

Revenue for a manufacturer is equal to the selling price of the car minus a dealer margin. Income tax is calculated by using an effective tax rate on the net profit before tax figure; the tax rate is different for different manufacturers. If the manufacturer makes a loss, income tax is considered to be negative. This approach was taken for two reasons; First, the "manufacturer" in this analysis is really just a part of a company. Therefore a loss in one division of a company can be used to offset a gain, for tax purposes, in another division. This is equivalent to the loss-making division paying a negative income tax. Second, this assumption simplifiss the analysis since it is not necessary to consider carrying forward losses for tax purposes.

This module uses several accounting identities to prepare the followng financial statement: (1) Income statement, (2) Cash Flow statement, (3) Balance sheet. It can also prepare a summary statement which includes only some of the items from the financial statements.

2.11 Assessing Risk

In order to assess the risk along a given dimension, the change in financial performance is observed as the values of the variables describing the given dimension are varied. Economic risk can be assessed by varying the total demand for cars. Marketing risk can be assessed by varying foreign and domestic market shares, foreign product mix, and
price cross-elasticities between size classes. The economic and the marketing uncertainties are the contextual uncertainties.

Technological risk can be assessed by varying the fuel economy gains from the various fuel economy measures, and the impact on fuel economy due to emission control and safety regulations. Risk in manufacturability can be assessed by varying the capital costs, and the increase in variable cost of production due to implementation of the fuel economy measures.

Finally, the financial risk faced by the manufacturer is the synthesis of all the above risks.

In this study all analyses are performed under the assumption that the scenario is defined. Thus the results of the analyses are valid only if the scenario defined reasonably describes the environment. This approach is extremely important since, if the analysis were not conditional on the contextual uncertainty being resolved, the contex tual uncertainty would tend to swamp the risk due to having to meet the AFES.

Regarding the endogenous uncertainties (i.e., technological and manufacturability), two alternative approaches are used. In the first approach, fixed values are assumed for all the variables which describe these two dimensions. In these cases, the model is used to estimate the financial performance of each manufacturer under the assumption that the values assigned to these variables are the true values. In the second approach, fixed values are assumed for only some of the variables while, for the rest, it is assumed that only their probability distributions are known. In these cases, the model is used in a Monte Carlo simulation to derive risk profiles for each of the manufacturers. For the probability case, the model has the capacity to handle truncated Normal distributions and Uniform distributions. The model produces risk profiles for four different summary measures of performance: (1) after-tax profit, (2) retained income, (3) long-term debt, (4) fuel economy without mix shifts. All four summary measures reported are for the last year of the period under analysis. A more detailed description of the method for obtaining the risk profiles is given in Section 3.

A typical line from the risk profile calculated by the model looks like:

Fractiles

	0.10	0.25	0.50	0.75	0.90
After-tax Profit (Billion \$)	1.0	1.3	1.8	1.9	2.0

This is to be interpreted as follows: there is a 0.1 chance that the profit will be less than or equal to $\$ 1.0$ billion; a 0.25 chance that it will be less than or equal to $\$ 1.3$ billion; a 0.5 chance that it will be less than or equal to $\$ 1.8$ billion; and so on. Similarly, it can be inferred that there is a 0.5 chance that the profit will be between $\$ 1.3$ billion and $\$ 1.9$ billion and a 0.8 chance that it will be between $\$ 1.0$ billion and $\$ 2.0$ billion.

3. DETAILED DESCRIPTION OP THE AFES MODEL

3.1 General

In this section, a detailed description of the model is given. The model determines the performance of each manufacturer, given all the required data, for one year at a time. Starting with the first year in the period under analysis, the model progresses forward in time, calculating the performance for each manufacturer for each year in the period under analysis.

A detailed description of the modules which constitute the model is given below. The description given is for determining the performance of each manufacturer for one year only. The method for determining the manufacturers' performance for several years is a straightforward extension of the description given below.

3.2 Marketing Module

The inputs to this module are the total U.S. demand, the foreign market share and the market shares of each of the four domestic manufacturers. The module calculates the sales volume for the foreign manufacturers and each of the domestic manufacturers. The mathematical equations are:
$s_{j}=$ market share of domestic manufacturer, j
$s_{f}=$ foreign market share

D = total U.S. demand
$S_{j}=$ sales volume of domestic manufacturer, j
$S_{f}=$ sales volume of foreign manufacturers
$S_{f}=s_{f} \cdot D$
$S_{j}=s_{j} \cdot\left(1-s_{f}\right) \cdot D$

It is assumed that s_{j} is constant over time while s_{f} and D vary over time. Actually, s_{j} is a function of several factors including the manufacturers' performance in the recent past. Since such a relationship is extremely difficult to formulate quantitatively, some simplifying assumption about the behavior of s_{j} over time is essential.

3.3 Fuel Economy Module

The aim of this module is to calculate the product mix produced by each manufacturer. Since the product mix produced by any manufacturer has no effect on the product mix produced by the other manufacturers, the procedure is described for just one manufacturer. First, the fuel economy by size-class is calculated considering the effect of weight reduction measures such as downsizing and material substitution (see Tables $3-1$ to $3-3$). Let
$w_{k}=$ curb weight of car in size-class k
$w_{k}^{\prime}=$ curb weight of car in size-class k in 1977
$e_{k}=$ fuel economy of car in size-class k
$e_{k}^{\prime}=$ fuel economy of car in size-class k in 1977

TABLE 3-1 CURB WEIGHT

 (in lbs.)(Year 1977)

	Full-size	Mid-size	Compact	Subcompact
Company G	4158	4073	3395	2587
Company F	4675	4217	3274	2508
Company C	4564	4184	3556	2200
Company A	-	4107	3331	2970

Source: "Data Analysis for 1981-1984," Document 2, Vol. I. ${ }^{7}$

TABLE 3-2 CURB WEIGHT AFTER DOWNSIZING

	(in lbs.)			
	Full-size	Mid-size	Compact	Subcompact
Company G	4158	3345	2838	2229
Company F	3837	3525	2899	2192
Company C	3911	3547	2956	2200
Company A	-	3439	2864	2000

Source: "Data Analysis for 1981-1984," Document 2, Vol. I. ${ }^{7}$

TABLE 3-3 CURB WEIGHT AFTER MATERIAL SUBSTITUTION (in lbs.)

Full-size

Company G	3645
Company F	3556
Company C	3661
Company A	-

Mid-size
3118
3280
3236
3239

Compact
2629
2673
2956
2549

Subcompact
2123 2077 2050 2000

Source: "Data Analysis for 1981-1984," Document 2, Vol. I. ${ }^{7}$

Then e_{k} and e_{k}^{\prime} are related as follows:

$$
e_{k}=e_{k}^{\prime}
$$

$$
\left[\frac{0.575}{\left[\frac{w_{k}+300}{w_{k}^{\prime}+300}\right]^{0.471}}+\frac{0.425}{\left[\frac{w_{k}+300}{w_{k}^{\prime}+300}\right]^{0.320}}\right]
$$

This equation is an approximation based on two equations in the WEFA model which give the relation between fuel economy and various characteristics of a car including the car's inertia weight.

Next, the fleet weighted average fuel economy is calculated for the manufacturer considering the effect of the technological improvements on fuel economy, the penetration of the technological improvements, and the effect of the emission control and safety regulations. To do this, the previous year's product mix is used.
$\begin{aligned} a= & \text { fleet weighted average fuel economy using previous year's product } \\ & \text { mix }\end{aligned}$
$c_{k}^{\prime}=$ proportion of cars of size-class k produced in the previous year
$g_{i}=$ fuel economy gain due to technological improvement i
$p_{i}=$ penetration of technological improvement i
$\mathrm{P}_{\mathrm{e}}=$ decrease in fuel economy due to emission control regulations
$P_{S}=$ decrease in fuel economy due to safety regulations
$a=\left(\sum_{k} c_{k}^{\prime} \cdot e_{k}\right)\left(1+\sum_{i} g_{i} \cdot p_{i}\right)\left(1-P_{e}-P_{s}\right)$

If the fleet weighted average fuel economy using the previous year's product mix is greater than the AFES, then the new product mix is the same as the previous year's.
$A=$ the automobile fuel economy standard
$c_{k}=$ proportion of cars of size-class k produced in the year under consideration.
If $a \geq A$, then $c_{k}=c_{k}^{\prime}$.

However, if the fleet weighted average fuel economy using the previous year's product mix is less than the AFES, then the product mix is changed. The product mix is changed in such a manner that the proportion of cars shifted from a size-class to the next smaller size-class is the same for all size-classes.

This concept is illustrated by an example. The first line in Table 3-4 gives the product mix in the previous year for a manufacturer. Assume that a 10 percent shift in the product mix is needed to satisfy the AFES. Therefore, 10 percent of the consumers in each size-class shift away from the size-class to the next smaller size-class. The second row in Table 3-4 gives the proportional shift away from each size-class; it may be noted that this proportion is zero for the subcompact class since there is no smaller size-class than the subcompact. Proportional shift away from a size-class is equal to 10 percent of the product mix in the previous year; ex cept, of course, for the subcompact class. Proportional shift to a size-class (see the third row in Table 3-4) is equal to the proportional shift away from the next larger size-class. The proportional shift to the full-size class is, of course, zero since there is no larger size-class. Finally, the product inix in the current year is equal to the product mix in the previous year minus the shift away from a size class plus the shift to a size class.

TABLE 3-4 PRODUCT MIX CHANGE

Product mix in
previous year
Shift away from a size-class

Shift to a size class

Product mix in current year
Full-size Mid-size Compact Subcompact

Full-size
0.10
0.01
0.03
0.04
0.00
0.00
0.09
0.28
0.01
0.03
0.04
0.39
0.24

If size-class 1 is full-size, size-class 2 is mid-size, and so on, and x is their proportional shift in the product mix, then:

$$
\begin{aligned}
& c_{1}=(1-x) c_{1}^{\prime} \\
& c_{2}=x c_{1}^{\prime}+(1-x) c_{2}^{\prime} \\
& c_{3}=x c_{2}^{\prime}+(1-x) c_{3}^{\prime} \\
& c_{4}=c_{4}^{\prime}+x c_{3}^{\prime} \\
& A=\left(\sum_{k} c_{k} \cdot e_{k}\right)\left(1=\sum_{i} g_{i} \cdot p_{i}\right)\left(1-p_{e}-p_{s}\right)
\end{aligned}
$$

Thus, there ar five equations in five unknowns, and the equations can be solved to obtain the new product mix, i.e., $c_{k}, k=1,2,3,4$.

3.4 Variable Manufacturing Costs Module

Since the variable manufacturing costs for any manufacturer have no effect on the costs for other manufacturers, the equations contained in this module are described for just one manufacturer.
$m=$ material cost per pound in 1976

1 = direct labor cost per car in 1976
$\begin{aligned} & o_{i}= \text { variable cost per car for implementing technological improvement } \\ & \\ & i\end{aligned}$
$m_{k}=$ material cost per pound for car in size-class k in the year under consideration
$S=$ total sales volume for the manufacturer

Then $m_{k}=m$ if material substitution has not been implemented for size-class k, and m_{k} $=1.074 \mathrm{~m}$ if material substitution has been implemented for size-class k^{21}

Total material cost $=\left(\sum_{k} m_{k} \cdot c_{k}\right) \cdot s$

Total direct labor cost $=\left(1.05 c_{1}+1.02 c_{2}+0.99 c_{3}+0.95 c_{4}\right) .1 . S$

Additional variable cost
of the technological improvements $=\left(\sum_{i} o_{i} \cdot p_{i}\right) . S$

The total variable cost of production is equal to the sum of the material cost, direct labor cost, and the additional variable cost of the technological improvements.

The parameters m, l and p_{i} are different for different manufacturers. But, since DOT assumes that the cost of implementing the technological improvements is the same for all manufacturers, the parameters o_{i} are the same for all manufacturers.

3.5 Capital Costs Module

The aim of this module is to calculate the capital costs related to fuel economy measures for each manufacturer; the fuel economy measures are: downsizing, material substitution, and technological improvements. Since these capital costs for one manufacturer do not affect the costs for other manufacturers, the module is described for only one manufacturer.
C_{0} = capital cost of implementing the technological improvements

```
ki}=\mathrm{ capital cost per car of implementing technological improvement i
S = sales (in units) for manufacturer in year under consideration
S' = sales (in units) for previous year
```

$p_{i}=$ penetration of technological improvement i in year under
consideration
$\mathrm{p}_{\mathrm{i}}^{\prime}=$ penetration of technological improvement i in previous year

$$
C_{0}=\sum_{i}\left(p_{i} \cdot s-p_{i}^{\prime} \cdot S^{\prime}\right) \cdot k_{i}
$$

In order to calculate the capital cost of downsizing, a dummy variable d_{k} must be defined. Let the year under consideration be year T. Then define d_{k} as:
$d k= \begin{cases}0 & \begin{array}{l}\text { If size-class } k \text { has not been downsized before or in } \\ \text { year } T\end{array} \\ c_{k} \cdot S & \text { if size-class } k \text { is being downsized in year } T \\ \left(c_{k} \cdot S-c_{k}^{\prime} \cdot S^{\prime}\right) & \begin{array}{l}\text { if size-class } k \text { was downsized before year } T, \text { i.e., in } \\ \text { year }(T-1) \text { or befor } c\end{array}\end{cases}$

Then C_{d}, the capital cost of downsizing for year T, is giv in by

$$
C_{d}=\sum_{k} d_{k} \cdot k
$$

where $K=$ capital cost per car of downsizing.

The calculation of capital cost for material substitution is identical to that for downsizing. Let C_{m} be the capital cost of material substitution in year T . Then the total capital cost in year T related to fuel economy measures is $=\mathrm{C}_{\mathrm{o}}+\mathrm{C}_{\mathrm{d}}+\mathrm{C}_{\mathrm{m}}$.

3.6 Price Module

The objective of this module is to calculate the new car prices by size-class. It is assumed that for a given size-class, all manufacturers receive the same price per car. The basic assumption in this module is that the price differentials between size classes are determind by the interaction between the product mix supplied by the industry and the consumer preferences via a price-clearing mechanism. It is thus impossible to consider one manufacturer at a time; rather, it is necessary to take into account the product mix produced by each manufacturer simultaneously. The product mix supplied in the market given each manufacturer's product mix is calculated first.
$f_{k}=$ proportion of cars of size-class k produced by foreign manufacturers
$y_{k}=$ proportion of cars of size-class k supplied in the market
$q^{j}=$ proportion of cars of size-class k produced by manufacturer j

$$
y_{k}=f_{k} \bullet s_{f}+\sum_{j}\left(1-s_{f}\right) \bullet s_{j} \bullet q_{k}^{j}
$$

In order to use the equations involving price cross-elasticities given in the WEFA model, "capitalized costs per mile," as defined in the WEFA model, must be used. A detailed description of this concept can be found in the report on the WEFA model ${ }^{6}$. Here, the concept is described only briefly. A person buying a car will over the life of that car pay for items such as: initial price of the car, financing charges, insurance, gas, maintenance, parking and tolls, etc. The discounted present value of all these costs is called the capitalized cost for the car. Using a special discount rate, the discounted present values of miles driven can be obtained. The ratio of the above two discounted values is called the "capitalized cost per mile." Obviously, the capitalized cost per mile is different for different size-class cars.

In this context, the realtionship between the price of a new car and the capitalized cost per mile is required. Using the data and assumptions from the WEFA model, the following equations can be derived:

$$
\begin{aligned}
& a_{1}=0.14049+6014 w_{1} \\
& a_{2}=0.13367+5316 w_{2} \\
& a_{3}=0.12439+4399 w_{3} \\
& a_{4}=0.10761+3887 w_{4}
\end{aligned}
$$

where,

$$
\begin{aligned}
& a_{k}=\text { capitalized cost per mile for size-class } k \text { (size-class } 1 \\
& \text { is full-size, size-class } 2 \text { is mid-size, and so on) }
\end{aligned}
$$

$w_{k}=$ price of a new car is size-class k

The following four equations are derived from the WEFA model:

$$
\begin{aligned}
& \frac{c y_{1}}{1-c y_{1}}=\beta_{1} \\
& \left\{\frac{\frac{a_{1}}{a_{2} y_{2}+a_{3} y_{3}+a_{4} y_{4}}}{y_{2}+y_{3}+y_{4}}\right\} \\
& \frac{c y_{2}}{1-c y_{1}}=\beta_{2}\left\{\begin{array}{l}
-1.98095 \\
\frac{a_{2}}{a_{1} y_{1}+a_{3} y_{3}+a_{4} y_{4}} \\
y_{1}+y_{3}+y_{4}
\end{array}\right\} \\
& \frac{c y_{3}+c y_{4}}{1-c y_{3}-c y_{4}}=\beta_{3}\left\{\frac{\frac{a_{3} y_{3}+a_{4} y_{4}}{y_{3}+y_{4}}}{\frac{a_{1} y_{1}+a_{2} y_{2}}{y_{1}+y_{2}}}\right\}-2.75703 \\
& \text { - } 11.9101 \\
& \frac{y_{4}}{y_{3}}=\beta_{4}\left\{\frac{a_{4}}{a_{3}}\right\}
\end{aligned}
$$

where $c, \beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} are some constants.

The WEFA model uses these four equations differently than this analysis. In the WEFA model, $\beta_{1}, \beta_{2}, \beta_{3}$, and β_{4} are determined by various demographic and economic factors, and, in the present context, are known. The costs a_{1}, a_{2}, a_{3} and a_{4} are also assumed to be known. The WEFA model is then aimed at determining the desired product mix: $y_{1^{\prime}}$ y_{2}, y_{3}, and y_{4}. (Actually, since c is also unknown, one more equation is needed. The fifth equation used is a normalizing equation: $y_{1}+y_{2}+y_{3}+y_{4}=1$.)

However, in this analysis y_{1}, y_{2}, y_{3}, and y_{4} are known, since they constitute the product mix supplied in the market. The capitalized costs per mile, a_{1}, a_{2}, a_{3}, and a_{4}, need to be determined. Another difference is that in the WEFA model, y_{k} are actually shares of the total stock of cars, while here, y_{k} is shares of new car registrations. However, that is a reasonably good approximation.

First, from the results of the WEFA model for the year under consideration, the desired mix is obtained, as well as the capitalized cost per mile (associated with this desired mix) by size class. Using this data, $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} can easily be calculated in the above equations.

Now, the equations are used in the analysis. The values of y_{1}, y_{2}, y_{3}, and y_{4} are found by aggregating the product mix for each manufacturer using the equation given earlier in this module. There are four, nonlinear, simultaneous equations in five unknowns: a_{1}, a_{2}, a_{3}, a_{4} and c.

In order to ubtain a single solution, a_{4} is arbitrarily fixed to be the same value as the capitalized cost per mile for size-class 4 in the WEFA model. This approach is for computational reasons only and ultimately the new car price will be normalized such that the average car price is constant over time rather than a_{4}.

After a_{4} is arbitrarily fixed, four nonlinear equations in four unknowns remain. A search method is used for solving these equations. It is expected that it has a value near 1.0. A search for c is conducted over the range 0.7 to 1.4 to obtain a solution to the four equations. The search is carried out in two stages. First, there is a search over the range 0.7 to 1.4 , and c is incremented by 0.1 at each step. Suppose that from this search it is found that 0.9 is the best value for c. Then there is a search for c in the range 0.8 to 1.0 , and c is incremented by 0.01 at each step. Thus, the procedure for
solving the four nonlinear equations is quite accurate. The values of a_{1}, a_{2}, a_{3} and c, in addition to a_{4}, are now known.

When the equations relating price of a new car to its capitalized cost per mile are used, the new car prices, $w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}$ and w_{4}^{\prime} are obtained. These prices must now be normalized such that the average price is constant over time. If:
$\mathrm{w}_{\mathrm{k}}=$ new car prices, which are the output of this module
$\mathrm{w}_{\mathrm{k}}^{\prime}=$ unnormalized new car prices (obtained above)
$\mathrm{A}=$ average price per car (which is constant over time)

Then:

$$
\begin{aligned}
& \frac{\mathrm{w}_{\mathrm{k}}}{\mathrm{w}_{\mathrm{k}}^{1}}=\text { constant } \\
& \sum_{\mathrm{k}}^{\mathrm{y}_{\mathrm{k}}} \cdot \mathrm{w}_{\mathrm{k}}=\mathrm{A}
\end{aligned}
$$

Using the above equations the new car prices are obtained which satisfy the two conditions: (1) average car price remains constant over time, and (2) the price differential between size-classes is such that the product mix supplied to the market is just sold. That is, at this price differential, the consumers demand a product mix which is identical to the one actually supplied.

3.7 Pinancial Module

Capital assets are divided into four classes: (1) land and buildings, (2) machinery and equipment, (3) tooling and (4) other. The "other" capital assets remain constant over time since there is no additional investment or depreciation for this class of capital asset. This module keeps track of the book value of the first three classes of capital
assets. It is assumed that of the fuel economy related capital investment (which is the output from the Capital Cost module), 5 pereent goes into land and buildings, 35 percent into machinery and equipment and 60 percent into tooling. Besides the fuel economy related capital investment in each of these three categories of investment, it is assumed that there is a constant annual capital investment in each of these three categories of investment. The capital assets (except for "other" capital assets) are depreciated on a straight line basis; the rate of depreciation is different for the different categories. For a given category, the rate of depreciation is different for different manufacturers. Then, for a given class of capital investment, the new book value is equal to the book value in the previous year plus the investment in this year, and minus the depreciation.

Interest is calculated on the outstanding long-term debt using a constant rate of interest; the rate of interest may be different for different manufacturers. Dividend paid out is calculated on the equity capital using a constant rate. Since, by assumption, the equity capital is constant, the dividend paid is constant for each manufacturer over time. The dividend rate may be different for different manufacturers.

3.8 Proforma Generator Module

The aim of this module is to generate the income statement, the cash flow statement and the balance sheet for each manufacturer. Since the financial statements for a manufacturer can be generated without considering the other manufacturers, the module is described with respect to just one manufacturer.
$z_{k}=$ dealer's margin for a car in size-class k
$c_{k}=\quad \begin{aligned} & \text { proportion of cars of size-class } k \text { produced by } \\ & \text { the manufacturer }\end{aligned}$
$w_{k}=\begin{aligned} & \text { new car price for size-class } k \text { (determined by the } \\ & \text { Price module) }\end{aligned}$

Revenue $=\left[\sum_{k} c_{k} \cdot w_{k}\left(1-z_{k}\right)\right] \cdot S$

Next, the module calculates the "fixed costs." However, this is somewhat of a misnomer since not all "fixed costs" are really fixed: some are semi-variable, some are calculated for each year and the rest are fixed. Selling and General Administration, Research and Development, and Maintenance, Repair and Rearrangement are semivariable; that is, they have a fixed component and a component which is proportional to revenue. Interest, depreciation and amortization are calculated for each year by the Financial module. Retirement fund and non-income tax costs are fixed and remain constant over time.

Before-tax profit is calculated as revenue minus variable costs of production minus the fixed costs. Finally, income tax is calculated using an effective rate of taxation, which is constant over time.

The cash flow statement and the balance sheet are generated using the information calculated thus far and the usual straightforward accounting identities. The sources of cash are net after-tax profit, depreciation, and amortization. The uses of cash are the total capital investments made (in that particular year) and dividends paid. The difference between the sources and uses of cash gives the net cash inflow. The net cash inflow is used to retire long-term debt. If the net cash inflow is negative, then the long-term debt is increased.

In the balance sheet, the book values of the four classes of assets are obtained from the Financial Module. The liabilities are: equity capital, long-term debt and retained earnings. By assumption, the equity capital is held constant. Long-term debt is equal to the long-term debt in the previous year minus the decrease in long-term debt (which is equal to the net cash inflow). The retained earnings are equal to the retained earnings in the previous year plus the net after-tax profit in the current year minus the dividends paid.

3.9 Use of the Model to Generate Risk Profiles

In the equations used in the model described above, it is assumed that all the variables and parameters are known with certainty. However, actually, all the parameters are not known with certainty. In particular, there is uncertainty connected with the fuel economy related parameters: the capital cost per car for downsizing, material substitution and the technological improvements, additional variable costs for the technological improvements, and the fuel economy gains from the technological improvements. Suppose that instead of the above being known, only a probability distribution for each parameter is known. Further, it is assumed that these probability distributions are independent of one another.

One way to approach such a situation is to analytically determine the probability distributions for the output variables of the model. However, given the complexity of the model, this approach is inpossible to implement. Another, and more feasible approach is to use Monte Carlo simulation.

The procedure is described with respect to just one random variable. Since it is assumed that the random variables are independently distributed, it is possible to repeat for each of the random variables, the procedure to be described for one random variable at a time. Let the random variable be, say, the capital cost per car for downsizing, K. (The tilde on the variable is to denote that the variable is a random variable.) It is assumed that a density function $f(K)$ for the variable K is known.

A random number generator is used to determine a value of K according to the probability density function $f(K)$. Say that it generates the number 1125. This number, 1125 , then becomes the capital cost per car of downsizing. Similarly, the values of the other random variables are generated. The performance of each manufacturer is determined by using these values and the model. This constitutes one trial in the Monte Carlo simulation. To get a probability distribution of the performance of each manufacturer, the procedure of generating values of the random variables is repeated, and the model is used to determine the performance with those values, by taking several trials in the simulation.

If the performance is measured by the financial statements over time, the probability distributions obtained would be very complex multivariate distributions. Therefore, attention must be concentrated on a few summary measures of performance. In this analysis, after-tax profit, long-term debt, retained income, and fuel economy without mix shifts, all in the last year of the period under analysis, are routinely given. In the output of the model, the probability distribution is represented by the values of five standard fractiles: the $0.1,0.25,0.5,0.75$, and 0.9 fractiles.

The model, as it is programmed now, can handle two types of probability distributions: truncated normal distribution and uniform distribution. The uniform distribution is specified by two parameters: the minimum value and the maximum value as given in Figure 3-1.

FIGURE 3-I. UNIFORM DISTRIBUTION BY MINIMUM AND MAXIMUM VALUE

A truncated normal distribution is depicted in Figure 3-2 in dark lines. Four parameters are needed to specify a truncated normal distribution: the minimum value, the maximum value, the mode (i.e., the most likely value), and the standard deviation of the normal distribution. (Note that the standard deviation of the normal distribution is greater than the standard deviation of the truncated normal distribution.) In a truncated normal distribution, the area from the tails is distributed proportionally over the range of the distribution, that is, between the minimum and maximum values. If the minimum and maximum values are the same for a uniform distribution and a truncated normal distribution, then the uniform distribution is more dispersed. In other words, the uniform distribution has a higher variance than the truncated normal distribution. This results in the distribution of the performance measures having a larger variance also.

FIGURE 3-2.TRUNCATED NORMAL DISTRIBUTION

4. NOMINAL SCENARIO

4.1 General

In this section, the nominal scenario is analyzed. "Nominal" means that the one-point estimates generated by DOT are used. It may be noted that all the data in DOT reports is in the form of one-point estimates. Nominal scenario means that all the data, except the data related to fuel economy measures, is set at nominal values or most likely values. Within the nominal scenario, four cases are examined. In the first case, the Nominal case, nominal data is used for the fuel economy related variables also. The next two cases use optimistic and pessimistic values for the fuel economy related variables. In the fourth case, it is assumed that the fuel economy related variables are uncertain and that there are probability distributions for them.

In the above analysis the joint impact of technological and manufac turing uncertainty is assessed. In the last part of this section the impact of technologic al uncertainty is separated from that of manufac turing une ertainty.

4.2 Nominal Case

The computer printed results for this case are given in Appendix A. However, the detailed financial statements for each year have not been included in order to save space. Here the results are presented in graphical and tabular form and some comments are offered about them.

Figure 4.1 indicates the fuel economy achieved by the four manufacturers if they implemented all the fuel economy measures as per the schedules assumed, but maintained their product mixes the same as those in 1976. None of the manufgeturers will be able to meet the AFES after 1981 without changing the product mix. Thus, the manufacturers have to produce more small cars and fewer of the larger cars. This can be seen by comparing the mix produced in 1985 with that produced in 1997 (see Table 41). The effect of this on the price differential between size-classes would be to make

FIGURE 4-I. NOMINAL CASE - FUEL ECONOMY ACHIEVED WITHOUT MIX SHIFTS
the larger cars more expensive and the smaller ones less expensive.

This effect is reinforced by the changing consumer preferences. By comparing the mix desired in 1985 with that in 1977, it is seen that consumers prefer a larger proportion of the larger cars in 1985 than in 1977. This change is due to the changes in the demographic characteristics of the population. For example, the average age of the population is higher in 1985 than in 1977, and since older people tend to prefer larger cars, a larger proportion of larger cars is desired in 1985 than in 1977. Thus, the two factors, change in mix produced (induced by AFES), and change in mix desired (induced by demographic changes), both have the same effect on car prices: the larger cars become more expensive and the smaller ones less expensive. The results of the model indicate that this indeed does happen, as can be seen by comparing the prices in 1985 with those in 1977 (see Table 4-1). The behavior of the car prices over the period 197785 is represented in Figure 4-2.

TABLE 4-1 NOMINAL CASE MARKET CHARACTERISTICS

	Full-size		Mid-size	
Mix produced in 1977	0.19		Compact	
Subcompact				
Mix produced in 1985	0.11	0.27		0.23

The difference between the number of full-size cars desired and actually produced as a fraction of the total demand is the fraction of consumers who have switched from a full-size car to a smaller car due to the changed price differential between the size classes. Similarly, the difference between the number of subcompact cars desired and actually produced as a fraction of the total demand is the fraction of consumers who

PRICE IN
THOUSANDS \$

FIGURE 4-2.CAR PRICES BY SIZE CLASS
have switched from a subcompact car to a larger car. Since the number of subcompact cars demanded is less than actually produced, this fraction is negative. Figure $4-3$ depicts the behavior of these two fractions over the period 1977-85.

Figure 4-4 gives the after-tax profit and the net cash inflow for each of the four manufacturers for the period 1977-85. Under the assumptions made in the model, Company G performs very well: its after-tax profits and net cash inflow are positive throughout the period and increase steadily. Company F performs well with increasing after-tax profit and positive cash inflows except for one year, 1979. Company C, however, makes a loss almost throughout the period, though its losses decrease fairly steadily. In 1985 it does make a slight profit; its return on sales is less than 1 percent (see Table 4-2). Its cash inflows are significantly negative throoughout the period, except for a small postitive inflow in 1985. From this it would seem that Company C has to find some way of raising significant amounts of capital; Company C would probably reduce the amount of capital required by reducing investment (i.e., reducing with respect to the assumptions made in this model). Company A fares even worse, making significant losses throughout the period 1977-85. Unlike Company C, Company A exhibits no trend towards profitability. Its cash inflows are significantly negative throughout this period.

From the return on sales in 1985 (see Table 4-2) it can be seen that Company G and Company F are both in very healthy positions; both have generated significant amounts of cash (since their long-term debt is negative) which must have been invested elsewhere by these corporations. Company C has a debt/equity ratio of 3.0 which is clearly impossible, considering industry practice. Even if Company C does not need as much capital as predicted by this model, it seems that it would still have to raise significant amounts of capital. From the capital structure predicted by the model, it appears that Company C would have to raise at least some equity capital of some form or another. As for Company A, the capital struc ture predicted is clearly an untenable position. Retained earnings are negative, that is, the stockholders' equity is negative; long-term debt is very high. It is extremely unlikely that Company A would ever actually achieve such a position. What would undoubtedly happen is that before 1985 . Company A would have to take some actions to raise equity capital in some form or another, cut down on investments and losses, sell other assets, or close down operations.

FIGURE 4-3. MARKET INDUCED SWITCHING IN CONSUMER BEHAVIOR

COMPANY G

COMPANY F

FIGURE 4-4. NOMINAL CASE RESULTS-FINANCIAL PERFORMANCE 1977-1985 (SHEET I OF 3)
COMPANY C

30NVWYOJY3d
NOMINAL CASE RESULTS - FINANCIAL
1977-1985 (SHEET 2 OF 3)
COMPANY A

FIGURE 4-4. NOMINAL CASE RESULTS-FINANCIAL PERFORMANCE 1977-
1985 (SHEET 3 OF 3)

It is not possible to use the model to predict what action Company A will take; but the model does indicate that some drastic action will be essential.

TABLE 4-2. NOMINAL CASE FINANCIAL POSITION 1985

	$\begin{gathered} \text { Company } \\ G \end{gathered}$	$\begin{gathered} \text { Company } \\ F \end{gathered}$	$\underset{\mathrm{C}}{\text { Company }}$	Company A
Sales (million cars)	5.9	2.7	1.6	0.25
Breakeven (million cars)	2.7	1.4	1.5	0.35
Revenue (billion \$)	29.9	11.9	7.2	0.87
After-tax profit (billion \$)	4.3	1.2	0.05	-0.06
Return on sales \%	14.4	10.1	0.7	-6.9
Equity capital (billion \$)	0.39	0.12	0.23	0.04
Retained earnings (billion \$)	27.1	10.8	0.59	-0.30
Long-term debt (billion \$)	-15.2	-4.7	2.5	0.88

4.3 Optimistic and Pessimistic Case

The cases when the variables related to fuel economy measures assume optimistic and pessimistic values are now considered. In the optimistic case, it is assumed that the fuel economy gains achieved from the various technological improvements are higher than predicted by DOT, and that the costs, both manufacturing and capital investment, are less than those predicted by DOT. In the pessimistic case, the fuel economy gains are less and the costs are higher than those predic ted by DOT. The ac tual values used, were decided upon in consultation with industry experts, and are given in Tables 4-3 and 4-4. All the data, besides that for the fuel economy related variables, are set at their nominal values.

Tables 4-5 to 4-8 compare the optimistic, nominal, and pessimistic case results for each of the manufacturers. It is noted that for each manufacturer, the fuel economy without mix shifts improves in the optimistic case (with respect to the nominal case), but not as much as it worsens in the pessimistic case.

TABLE 4-3. COSTS RELATED TO FUEL ECONOMY MEASURES (Optimistic Data)

Capital cost per car	Additional variable manufacturing cost

Downsizing
Material substitution
Automatic transmission Manual transmission Lubricants Accessories
Aerodynamic drag Rolling resistance

875
43.8
438.0
21.88
0.0
21.88
0.0
0.0
manufacturing cost
*
*
40.0
22.2
4.73
8.75
8.75
30.63

Source: Based on judgment of an industry expert.

TABLE 4-4 COSTS RELATED TO FUEL ECONOMY MEASURES

Downsizing
Material substitution
Automatic transmission
Manual transmission
Lubric ants
Accessories
Aerodynamic drag Rolling resistance
(Pessimistic Data)

Capital cost per car	Additional variable manufacturing cost
1550	$*$
77.5	$*$
775.0	57.5
38.8	27.8
0.0	5.28
38.8	15.5
0.0	15.5
0.0	54.5

Source: Based on judgment of an industry expert.
*Effect on manufacturing costs depends on the weight reduction achieved.

TABLE 4-5. POSITION IN 1985, COMPANY G

	Optimistic case	Nominal case	Pessimistic case
Fuel economy without mix shifts (mpg)	25.75	25.2	23.8
Sales (million cars)	5.9	5.9	5.9
Breakeven (million cars)	2.7	2.7	2.8
Revenue (billion \$)	29.7	29.9	30.5
After-tax profit (billion \$)	4.2	4.3	4.2
Return on sales \%	14.1	14.4	13.8
Equity capital (billion \$)	0.39	0.39	0.39
Retained earnings (billion \$)	27.4	27.1	24.8
Long-term debt (billion \$)	-16.1	-15.2	-10.6
TABLE 4-6. POSITION IN 1985, COMPANY F			
	Optimistic case	Nominal case	Pessimistic case
Fuel economy without mix shifts (mpg)	25.7	25.1	23.8
Sales (million cars)	2.7	2.7	2.7
Breakeven (million cars)	1.4	1.4	1.6
Revenue (billion \$)	12.1	11.9	11.5
After-tax profit (billion \$)	1.3	1.2	0.89
Return on sales \%	10.7	10.1	7.7
Equity capital (billion \$)	0.12	0.12	0.12
Retained earnings (billion \%)	11.1	10.8	9.2
Long-term debt (billion \$)	-5.4	-4.7	-1.9

TABLE 4-7. POSITION IN 1985, COMPANY C

	Optimistic case	Nominal case	Pessimistic case
Fuel economy without mix shifts (mpg)	26.0	25.4	24.1
Sales (million cars)	1.6	1.6	1.6
Breakeven (million cars)	1.6	1.5	1.4
Revenue (billion \$)	7.1	7.2	7.5
After-tax profit (billion \$)	0.01	0.05	0.15
Return on sales \%	0.1	0.7	2.0
Equity capital (billion \$)	0.23	0.23	0.23
Retained earnings (billion \$)	0.65	0.59	0.27
Long-term debt (billion \$)	2.3	2.5	3.4

TABLE 4-8. POSITION IN 1985, COMPANY A

	Optimistic case	Nominal case	Pessimistic case
Fuel economy without mix shifts (mpg)	24.6	24.2	23.2
Sales (million cars)	0.25	0.25	0.25
Breakeven (million cars)	0.33	0.35	0.43
Revenue (billion \$)	0.88	0.87	0.84
After-tax profit (billion \$)	-0.05	-0.06	-0.10
Return on sales \%	-5.7	-6.9	-11.9
		0.04	0.04
Equity capital (billion \$)	0.04	-0.30	-0.51
Retained earnings (billion \$)	-0.25	0.88	1.22

Considering the financial performance of the manufacturers, Company G's profit position is essentially unchanged in all the three cases. However, if the long-term debt in 1985, which can be thought of as an indicator of cumulative performance for the period 1977-85 is looked at, it can be seen that Company G is better off by 5.9 percent in the optimistic case compared to the nominal case. But in the pessimistic case, it is worse off by 30.2 percent compared to the nominal case. These results may be interpreted that the nominal case gives the best one-point predictions given the best one-point estimates of the relevant data. If the fuel economy related vari.ables are realized with optimistic values (i.e., higher gains and lower costs), the finaneial performance would improve slightly compared to the nominal case. While, if the fuel economy related variables are realized with pessimistic values, the performance would be significantly worse than in the nominal case. In other words, the down side risk is high. Shortly, it is shown that these remarks about the down side risk apply to the other three manufac turers also.

In the case of Company F, the after-tax profit in 1985 exhibits the similar effect of high down side risk, though not in as pronounced a manner as that for long-term debt in 1985.

The profit position of Company C exhibits an apparently counter-intuitive result. Company C makes less profit in the optimistic case than in the pessimistic case. However, this is due to the fact that the fuel economy without mix shifts is higher for Company C than for the other three manufacturers. Thus, in the pessimistic case, the other three manufacturers are forced to resort to greater mix shifts (i.e., greater compared to that for the nominal case) than is the case for Company C, with the result that price differentials determined by the Price module favor Company C more in the pessimistic case than in the nominal case. Thus, the revenue for Company C is higher in the pessimistic case than in the optimistic case, which accounts for the behavior of the after-tax profit figures. However, the long-term debt figures exhibit the high down side risk behavior similar to the other manufac turers.

The results for Company A are as expected. The profit figures exhibit a high down side risk in as pronounced a manner as do the long-term debt figures.

4.4 Probabilistic Case

The probabilistic case comes from the premise that the values for the fuel economy related variables are not known with certainty; rather, probability distributions for each of these variables are known. The probability distribution assumed is a truncated normal distribution for all the probabilistic variables. The parameters of the distribution are based on the judgment of an industry expert, and are given in Tables 4-9 and 4-10. The probability distributions are given in Tables 4-11 to 4-13. The computer results for this case are given in Appendix A.

There is a remarkable correspondence between the results obtained in this case and the expectations based on the earlier analysis of the optimistic, nominal and pessimistic cases. It is worthwhile comparing the results for the long-term debt position. (See Table 4-14). The 0.1 fractile corresponds fairly well with the optimistic case, while the 0.9 fractile corresponds to the pessimistic case. Thus, the range of values of the longterm debt is roughly the same whether the estimate comes from the probabilistic case analysis or the pessimistic and optimistic case analyses. Also, as would be expected from the earlier remarks about high down side risk, the median values (i.e., 0.5 fractile values) are well above the nominal case values. That is, the probability that the longterm debt for any company is greater than or equal to the nominal case value is significantly greater than .5.

TABLE 4-9. FUEL ECONOMY GAINS FROM TECHNOLOGICAL IMPROVEMENTS (Probabilistic case)
$\left.\begin{array}{llllll}\text { Option } & \begin{array}{c}\text { Minimum } \\ \text { value }\end{array} & \begin{array}{c}\text { Most likely } \\ \text { value }\end{array} & & \begin{array}{c}\text { Standard } \\ \text { deviation }\end{array} & \end{array} \begin{array}{c}\text { Maximum } \\ \text { value }\end{array}\right]$

Source: Judgment of an industry expert.

TABLE 4-10. COSTS RELATED TO FUEL ECONOMY MEASURES (Probabilistic case)

	Capital cost per car			
	Minimum value	most likely value	Standard deviation	$\begin{aligned} & \text { Maximum } \\ & \text { value } \end{aligned}$
Downsizing	750	1000	550	2100
Material substitution	37.5	50.0	27.5	105.0
Automatic transmission	375	500	275	1050
Manual transmission	18.75	25.0	13.75	52.5
Lubricants	0.0	0.0	0.0	0.0
Accessories	18.75	25.0	13.75	52.5
Aerodynamic drag	0.0	0.0	0.0	0.0
Rolling resistance	0.0	0.0	0.0	0.0
	Additional variable manufacturing cost			
Automatic transmission	35.0	45.0	12.0	70.0
Manual transmission	19.4	25.0	2.8	30.6
Lubricants	4.45	5.0	0.3	5.55
Accessories	7.5	10.0	5.5	21.0
Aerodynamic drag	7.5	10.0	5.5	21.0
Rolling resistance	26.25	35.0	19.4	74.0

Source: Based on judgment of an industry expert.

TABLE 4-11. FUEL ECONOMY GAINS FROM TECHNOLOGICAL IMPROVEMENTS PROBABILITY DISTRIBUTION

	Fractiles				
Option	0.1	0.25	0.5	0.75	0.9
	Automatic transmission	6.16%	7.57%	9.31%	10.6%
Manual transmission	4.29	4.62	5.0	5.4	5.59%
Lubricants	1.15	1.50	1.85	2.15	2.35
Accessories	1.29	1.62	2.0	2.4	2.77
Aerodynamic drag	1.76	2.46	3.27	3.92	4.30
Rolling resistance	2.04	2.48	3.0	3.54	4.05

Source: Computed from Table 4-9.

TABLE 4-12
CAPITAL COSTS RELATED TO FUEL ECONOMY MEASURES PROBABILITY DISTRIBUTION

Capital cost per car
Fractiles

Option	$\mathbf{0 . 1}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5}$	$\mathbf{0 . 7 5}$	0.9
	$\mathbf{8 5 2}$	989	1220	1501	1753
Downsizing		43	49	61	75
Material substitution	426	489	610	750	88
Automatic transmission	21	24	31	38	877
Manual transmission	0	0	0	0	44
Lubricants	21	24	31	38	44
Accessories	0	0	0	0	0
Aerodynamic drag	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0
Rolling resistance					

Source: Computed from Table 4-10.

TABLE 4-13. ADDITIONAL VARIABLE MANUFACTURING COSTS RELATED TO FUEL ECONOMY MEASURES PROBABILITY DISTRIBUTION

Cost per car

Fractiles

Option
Automatic transmission Manual transmission Lubricants
Accessories
Aerodynamic drag
Rolling resistance

0.1	0.25	0.5	0.75	0.9
37.9	41.8	47.8	54.5	60.9
22	23	25	27	28
4.7	4.8	5.0	5.2	5.3
8.5	9.9	12.2	15.0	17.5
8.5	9.9	12.2	15.0	17.5
29.8	34.6	42.8	52.7	61.6

Source: Computed from Table 4-10.

TABLE 4-14. LONG-TERM DEBT IN 1985

Probabilistic case

		Fractiles			0.75	0.9	Optimistic case	Nominal case	Pessimistic case
		0.1	0.25	0.5					
Company	G	-15.7	-14.0	-12.7	-11.1	-9.7	-16.1	-15.2	-10.6
Company	F	- 4.7	- 4.0	- 3.5	- 2.7	-1.9	- 5.4	- 4.7	- 1.9
Company	C	2.4	2.8	3.1	3.4	3.8	2.3	2.5	3.4
Company	A	0.87	0.95	1.04	1.11	1.23	0.80	0.88	1.22

4.5 Technological and Manufac turing Risk

The risk due to the uncertainty in the fuel economy gains achieved from the various fuel economy measures can be thought of as a technological risk. Manufacturing risk can be thought of as being due to the uncertainty in the costs, both variable cost of production and capital costs, of implementing these measures. In the analysis above, the fuel economy gains and the costs of the measures have been varied simultaneously. Thus, the joint impact of the uncertainties in the technological and manufacturability areas have been assessed. In this sec tion, an attempt is made to separate the two impac ts.

It must be assumed that the costs related to the fuel economy measures are realized at their nominal values, while, first, the fuel economy gains are realized at the optimistic values, and then at the pessimistic values. Next, it is assumed that the fuel economy gains are realized at their nominal values, while the related costs are at the optimistic, and then pessimistic values. Thus, there are four cases. The results of these four cases, along with the results of the first three cases analyzed earlier, are presented in Table 415. Only the long-term debt position in 1985 in these comparisons is considered, since that is probably the best overall measure of performance.

From Table $4-15$ it is seen that for each manufacturer, the variation in a column is much less than the variation in a row. The variation in a column is the variation in performance as fuel economy gains vary, assuming that the related costs remain constant. In that sense, the variation in a column can be considered to be an indicator of risk due to technologic al uncertainty. Similarly, variation in a row can be considered to be an indicator of risk due to uncertainty in the area of manufacturability. It is thus concluded that the risk due to uncertainty in manufacturing appears to be higher than the risk due to technologic al uncertainty.

Fuel economy gains being held constant, each manufacturer performs better as costs change from pessimistic to optimistic, as is to be expected. Costs being held constant, as fuel economy gains change from pessimistic to optimistic, Company F and Company A perform better while Company G and Company C perform worse. It is not easy to see the cause of this behavior intuitively, since pessimistic fuel economy gainscause larger
TABLE 4-15. DEBT FOSITION IN 1985 (BILLION \$)
MEASURES
COSTS RELATED TO FUEL ECONOMY
OPTIMISTIC NOMINAL PESSIMISTIC

-5.4	-4.8	--
-5.4	-4.7	-2.2
--	-4.6	-1.9

COMPANY F

COMPANY C

COMPANY A
 , $=$ -4

 \square

COMPANY G
 COMPANY 6

OPTIMISTIC
ECONOMY NOMINAL
PESSIMISTIC $\begin{array}{lr}\text { FUEL } & \text { OPTIMISTIC } \\ \text { ECONOMY } & \text { NOMINAL } \\ \text { GAINS } & \text { PESSIMISTIC }\end{array}$ $\begin{array}{lr}\text { FUEL } & \text { OPTIMISTIC } \\ \text { ECONOMY } & \text { NOMINAL } \\ \text { GAINS } & \text { PESSIMISTIC }\end{array}$ $\begin{array}{lr}\text { FUEL } & \text { OPTIMISTIC } \\ \text { ECONOMY } & \text { NOMINAL } \\ \text { GAINS } & \text { PESSIMISTIC }\end{array}$
mix shifts which, given the current mix and fuel economy by size-class for each manufac turer, favor Company G and Company C. Such behavior is one of the insights yielded by the model. This result should not be interpreted in an absolute sense; rather, the correct interpretation is that if fuel economy gains are realized at the pessimistic values, Company F and Company A are hurt more than Company G and Company C.

5. ANALYSIS OP DIPPERENT SCENARIOS

5.1 General

In the previous section several situations were analyzed under the nominal scenario. The values of the variables describing the scenario were fixed, and the values of the fuel economy related variables were varied. In this section, different scenarios are examined, while, for the most part, the values of the fuel economy related variables are assumed to be the nominal values. In the first scenario, it is assumed that the capital expenditures by the manufacturers are higher than estimated by the nominal data. In the second scenario, a hypothetical situation is analyzed in which the AFES do not exist. In the third scenario, it is assumed that the AFES are higher than is actually the case. The next two scenarios are aimed at analyzing market risk: in one the effect of the foreign manufacturers entering the mid-size car market is examined, while the other examines one case of a shift in market shares of the domestic manufacturers. Finally, three scenarios are formulated to examine economic risk. In these scenarios, the projections of total automobile demand are changed.

5.2 Increased Capital Expenditure

A recent report ${ }^{22}$ produced by DOT, and conversations with personnel from the Transportation Systems Center of DOT, showed that the data input for the Nominal case discussed earlier might significantly underestimate the capital expenditure of the manufacturers. Table $5-1$ compares the capital expenditures estimates for the period 1978-85 based on the above report ${ }^{22}$ with the output of the model for the Nominal case. The revised estimates and the Nominal case results agree to within 5 percent for Company A; however, for Companies G, F and C the difference is very large. For these three companies, the revised estimates of capital expenditure are greater than the Nominal case results by 50 to 100 percent.

The objective of the "Increased Capital Expenditure" scenario is to analyze the impact of AFES on the manufacturers if it is assumed that their capital expenditures are as high as the revised estimates given in Table 5-1. In this scenario, all the input data for
the model are the same as in the Nominal case except that the data relating to capital expenditure are adjusted so that the total capital expenditure for the period 1978-85 for each manufacturer is equal to the revised estimates given in Table 5-1. Figure 5-1 gives the after-tax profit, net cash inflow and the capital investment for each manufacturer for the period 1977-85 for the "Increased Capital Expenditure" scenario. Table 5-2 gives the financial position in 1985 for each manufacturer under this scenario.

TABLE 5-1. CUMULATIVE CAPITAL EXPENDITURES FOR 1978-85 (billion \$)

	$\begin{gathered} \text { Company } \\ \mathrm{G} \\ \hline \end{gathered}$	Company F	$\begin{gathered} \text { Company } \\ \hline \end{gathered}$	Company A
Revised estimates*	23.4	12.9	5.04	0.72
Nominal case	15.8	6.56	3.29	0.68

[^3]TABLE 5-2. INCREASED CAPITAL EXPENDITURE SCENARIO FINANCIAL POSITION 1985

	Company G	Company F	Company C	Company A
Sales (million cars)	5.94	2.71	1.62	0.25
Breakeven (million cars)	3.00	1.97	1.87	0.36
Revenue (billion \$)	29.9	11.9	7.2	0.87
After-tax profit (billion \$)	3.57	0.62	-0.14	-0.07
Return on sales (\%)	11.9	5.2	-1.9	-8.0
Equity capital (billion \$)	0.39	0.12	0.23	0.04
Retained earnings (billion \$)	22.75	7.26	-0.52	-0.33
Long-term debt (billion \$)	-7.41	2.07	4.5	0.93

FIGURE 5-I.INCREASED CAPITAL EXPENDITURE SCENARIO,COMPANY G (BILLION \$)
(SHEET I OF 4)

CAPITAL INVESTMENT

NET CASH INFLOW

AFTER-TAX PROFIT
 '77 AETER-TAX \rightarrow

FIGURE 5-1. INCREASED CAPITAL EXPENDITURE SCENARIO, COMPANY F (BILLION \$)
(SHEET 2 OF 4)

NET CASH INFLOW
FIGURE 5-1. INCREASED CAPITAL EXPENDITURE SCENARIO, COMPANY F (BILLION S)
(SHEET 2 OF 4)
FIGURE 5-I.INCREASED CAPITAL EXPENDITURE SCENARIO,COMPANY C (BILLION \$) (SHEET 3 OF 4)

AFTER-TAX PROFITS
CAPITAL INVESTMENT

NET CASH INFLOW

AFTER-TAX PROFIT

FIGURE 5-I. INCREASED CAPITAL EXPENDITURE SCENARIO,COMPANY A (BILLION \$)
SHEET 4 OF 4)

When the results of this scenario are compared with the Nominal case, it is seen that Companies G, F and C are significantly worse off under this scenario, while Company A is only marginally worse off. This is to be expected since the capital expenditure for Company A was increased by only about 5 percent, whereas for Companies G, F and C, the increases were 48,97 and 53 percent respectively. The revenue for each manufacturer is the same under the two scenarios, since only the data relating to capital expenditure were adjusted upward in the "Increased Capital Expenditure Scenario." Thus, for the same revenue, Company G's after-tax profits decreased by 17 percent, Company F's by 48 pei sent, Company C's by 380 percent and Company A's by 10 percent under this scenario. Another finding worth noting is, that while under the Nominal case Company C exhibited a trend towards profitability over the period 197785 , it exhibits no such trend under this scenario.

Considering the capital structure in 1985 under this scenario, it is seen that Company G is in a strong position. It has liquidated all its debt and has built up a credit balance of $\$ 7.4$ billion. Company F is also in a strong position; its debt/equity ratio is a healthy 0.28. Companies C and A are both in clearly untenable positions. Both have negative retained earnings. Both the companies would have had to take some drastic actions to avoid reaching such a position.

5.3 "Ideal" Scenario

In this section a scenario is analyzed which is ideal from the perspective of the manufacturers. In this scenario, the AFES is not enforced; thus the manufacturers do not have to, but may, implement the various fuel economy measures. It is assumed that a manufacturer will implement a particular fuel economy measure only if it is economically profitable for him to do so. Then, under the assumptions made in the model, the manufacturers will not implement the technological improvements in transmission, accessories, lubricants, aerodynamic drag, and rolling resistance because all these options involve increased capital and manufacturing costs with no compensating increase in revenue. The manufacturers will not, of course, under the assumptions of this model, change their product mix, since they do not have to meet any fuel economy standards. Regarding downsizing and material substitution, however, the situation is not so clear cut. Both these alternatives involve increased capital costs but, at the same time, decrease variable manufacturing costs.

The objective of analyzing this scenario is to determine how much better of f the manufacturers are under this ideal scenario compared to the Nominal case. The analysis also determines whether it is economically profitable for the manufacturers to implement downsizing and material substitution. Two cases are considered under this scenario. In the first alternative, it is assumed that the manufacturers implement both downsizing and material substitution. In the second alternative, it is assumed that the manufacturers implement downsizing but do not implement material substitution. Tables 5-3 and 5-4 compare the results of these two cases with the Nominal case from the previous section.

TABLE 5-3 MARKET CHARACTERISTICS IN 1985

| Full-
 size | Mid-
 size | Compact |
| :--- | :--- | :--- | | Sub- |
| :---: |
| compact |

Mix in Nominal case
0.11
0.23
0.25
0.40

Mix in "Ideal" scenario
0.20
0.28
0.23
0.29

Price in Nominal case (\$)	9569	7184	4947	3689
Price in "Ideal" scenario	8225	5567	4990	3900

TABLE 5-4. FINANCIAL. POSITION IN 1985

(billion \$)

		Company G	Company F	Company C	Company A
After-tax profit	Nominal	4.3	1.2	0.05	-0.06
	Ideal scenario*	3.9	1.5	0.06	-0.01
	Ideal scenario**	3.8	1.5	0.06	-0.02
Long-term debt	Nominal	-15.2	-4.7	2.5	0.88
	Ideal scenario*	-16.6	-6. 5	1.8	0.64
	Ideal scenario**	-16.3	-6.6	1.8	-0.64

*Alternative 1, i.e., both downsizing and material substitution are implemented. **Alternative 2, i.e., only downsizing is implemented.

When the "Ideal Scenario, Alternative 1" is compared with the Nominal case, it can be seen that Companies F, C and A are in a better profit position in 1985 while Company G is worse off. This result should be interpreted in a relative sense, that is: not imposing AFES benefits Companies F, C and A more than it benefits Company G. As far as the 1985 debt position is considered, all of the four manufacturers are better off without AFES, as is to be expected. The debt position for Companies G, F, C and A is better by $9.2,47,28$ and 27 percent respectively.

It is interesting to compare the "Ideal Scenario, Alternative 1 " case with "Ideal Scenario, Alternative $2^{\prime \prime}$ case. Between these two cases, there is virtually no difference in the profit position or debt position for any of the manufacturers. The only difference between these two cases is that the first alternative implements material substitution while the second does not. From this, one can conclude that, under the assumptions of the model, downsizing is economically profitable while material substitution has no significant economic impact on the manufacturers. That is, for material substitution, the capital cost is almost exactly offset by the decrease in material cost.

5.4 Higher APES

In this scenario, everything is the same as in the Nominal case except that the schedule of AFES is different. Here it is assumed that the AFES is the same as in the Nominal case for the years 1977-83; in 1984 it is 28.5 mpg instead of 27.0 in the Nominal case), and in 1985 it is 30.0 mpg (instead of 27.5 in the Nominal case). Results of the higher AFES case are compared with the Nominal case in Tables 5-5 and 5-6.

TABLE 5-5 MARKET CHARACTERISTICS IN 1985

	Full- size	Mid- size	Compact	Sub- compact
Mix in Nominal case	0.11	0.23	0.25	0.40
Mix in "Higher AFES" case	0.07	0.19	0.26	0.48
Price in Nominal case	9569	7184	4947	3689
Price in "Higher AFES" case	10782	8719	5085	3665

TABLE 5-6. FINANCIAL POSITION IN 1985 (billion \$)
After-tax profit
Long-term debt $\left\{\begin{array}{lrrrr}\text { Nominal } & 4.3 & 1.2 & 0.05 & -0.06 \\ \text { Higher AFES } & 4.8 & 1.2 & 0.16 & -0.09\end{array}\right.$
$\left\{\begin{array}{lrrrr}\text { Nominal } & -15.2 & -4.7 & 2.5 & 0.88 \\ \text { Higher AFES } & -14.3 & -4.6 & 2.8 & 0.92\end{array}\right.$

TABLE 5－7．HIGHER AFES SCENARIO

Company G

＋11	－：＋170	－1344\％	－11424	－10853．	－R332．
	$\because 30$	」1尥。	フちら57。	2666\％．	27389.
	3 13.	420．	4n92。	4＊99．	5151.
1． $21+13$	$\therefore 4.0$	＜3．21	24.71	24.93	25.32

Company F

1－4 1	－づつの中。	－36．0．	－3015．	－ 2156.	－1209．
	$\cdots 8.1$ 。	4305.	？いいいか。	10 ¢18．	10823．
ar！＝1A！11吅！	＂！	144.	W7\％．	1.154.	109 A 。
14：11：s	， 50.4	\because ロ\％	24.96	27.88	25．30

Company C

$1+11$	」らい。		3259.	3701.	4155．
1＊1 1 Cくı＊	－ins．	－ 1 。	3710	559.	H02．
	i	yr．	1 HO	312.	582.
	21．19	14.55	14.97	25.22	25.62

Company A

1．t． 1	rf＂。	91）	1117.	1216.	1354.
	－553．	－50．	－113．	－ 344.	－273．
	－171．	－1）	－116．	－102．	－90．
				，	90．
	23．3．	$23.5 n$	23.32	24.01	24.18

Imposing higher AFES decreases the proportion of larger cars produced making the larger cars more expensive (see Table 5-5). The profit position in 1985 (see Table 5-6) shows that Companies C and G are better off with higher AFES, while Company A is worse off. Once again, it is emphasized that this result should be interpreted in a relative sense. From the 1985 debt position, it can be seen that all the manufacturers are worse off with the higher AFES, which corresponds with one's intuition. The debt positions for Companies G, F C and A are worse by 6, 2, 12 and 5 percent respectively under the "Higher AFES" scenario.

Under this scenario, it is next assumed that the fuel economy related variables are known only by their probability distribution. If it is assumed that the distributions are truncated normal and the parameters are as given in Section 4, then there is a case which is comparable to the probabilistic case discussed under the Nominal scenarios. The results of the probabilistic case discussed under the Nominal scenarios. The results of the probabilistic case under the higher AFES scenario are given in Table 5-7. When the results for these two cases are compared, the same conclusions as just stated above follow.

5.5 Poreign Penetration of Mid-size Car Market

In this scenario the product mix of the foreign manufacturers is changed as follows:

	Large		Mid-size		
	0.0			Compact	
Subcompact					
Nominal scenario	0.0		0.2		0.8
Scenario under	0.0		0.1		0.3

Under this scenario two cases are discussed: First, the nominal values for the fuel economy related variables; second, the probability distribution for the fuel economy related variables.

Table 5-8 compares the nominal cases under the Nominal scenario with that under the "Foreign Penetration of Mid-size Car Market" scenario. Companies G, F, and C perform worse in "Foreign Penetration" scenario, with Company G being the most affected. Company A is relatively unaffected by the foreign penetration into the midsize car market. This is understandable since in the "Foreign Penetration" scenario, the competitive pressure in the smaller car market is reduced; and since Company A is mostly in the smaller car market, Company A is thus not hurt by this move by foreign manufacturers.

TABLE 5.8 FINANCIAL POSITION IN 1985

		Company G	Company F	Company C	Company A
After-Tax profit	Nominal	4.3	1.2	0.05	0.06
	Foreign penetration	3.9	1.1	0.01	0.06
Long-term debt	Nominal	15.2	4.7	2.5	0.88
	Foreign penetration	12.7	4.4	2.9	0.90

Table 5-9 gives the results of the probabilistic case under the "Foreign Penetration" scenario. When this is compared with the Nominal case under the Nominal scenario, the same conclusions just stated above are arrived at.

The impact on financial performance considered in this scenario can be viewed as one form of marketing risk, since the penetration of the mid-size market by foreign manufacturers changes the competitive pressures in the market.

TABLE 5－9．FOREIGN PENETRATION OF MID－SIZE CAR MARKET SCENARIO

$$
\text { POSITION AT END OP YEAR } 1985
$$

PRACTILES				
0.10	0.25	0.50	0.75	0.90

Company G
DEHT
REI INCOME
AFT－TAX PROFIT
FUEL ECONOMY WITHOUT
MIX SHIFTS

$$
\begin{array}{rrrrr}
-13657 & 12495 & 11257 & -8978 . & -7886 . \\
21470 & 22134 & 23721 . & 24636 . & 25134 \% \\
3516 . & 3651 & 3791 . & 3969 . & 4090 . \\
24.12 & 24.44 & 24.69 & 25.13 & 25.36
\end{array}
$$

Company F
DEBT
PEI INCOME
AFT－TAX PROFIT
FUEL ECONOMY WITHOUT
MIX SHIFTS
－ 4571.
－4191．
－ 3529.
－2520．－1798．
8845． 9227. 916 945.
9941. 1020 。 10247 ．

10511 。
$24.11 \quad 24.43$
24.66
25.08
25.32

Company C
DEAT
RET INCOME
AFToTAX PROFIT
FUEL ECONOMY WITHOUT MIX SHIFTS
$\begin{array}{rr}2645 . & 2926 . \\ -508 . & -324 . \\ -140 . & -89 . \\ 24.45 & 24.78\end{array}$
3221 ．
3750．4036．
251． 380. 11

98 。
25.42
25.63

Company A
DRR
REI INCOME．
$\begin{array}{rr}871 & 909 \\ -537 . & -480 \\ -95 & -88 \\ 23.52 & 23.65\end{array}$
1013
1128
1235 ．
－394．
$-339 . \quad-314$.
AFT－TAX PROFIT
FUEL ECONOMY WTHNUT
MIX SHIFTS
23.52

23．86
$24.13 \quad 24.22$

5.6 Change in Market Shares

Another way to examine market risk is to change the market shares of the domestic manufacturers. Here one scenario is examined in which Company C's share is decreased by 1.5 percentage points, Company G's share is increased by 1 percentage point and Company F's share is increased by 0.5 percentage point. As expected, Companies G and F perform better, and Company C performs worse, as is shown in Table 5-10.

TABLE 5-10. POSITION IN 1985

		Company G	Company F	Company C	Company A
After-tax profit	Nominal	4.3	1.2	0.05	-0.06
	Changing share	4.34	1.25	-0.014	-0.059
Long-term debt	¢ Nominal	-15.2	-4.7	2.5	0.88
	Changing share	-15.6	-4.96	2.77	0.87

5.7 Rconomic Risk

Using this model, economic risk can be assessed by changing the values of the total automobile demand over the period of analysis. In the Nominal case the WEFA model's projection of U.S. automobile demand is used.

Here, three scenarios obtained by changing the demand projection are analyzed. In the first scenario, it is assumed that the demand in each year is 5 percent more than that predicted by the WEFA model. In the second scenario, the demand in each year is 5 percent less than that predicted by the WEFA model. Finally, in the third scenario, it is assumed that the demand is more cyclical than predicted by the WEFA model. Specifically, the following demand projection is assumed in the third scenario:

| Year | Demand
 (million cars) |
| :---: | :---: | :---: |
| 1977 | 11.3 |
| 1978 | 10.6 |
| 1979 | 11.5 |
| 1980 | 12.7 |
| 1981 | 12.7 |
| 1982 | 11.5 |
| 1983 | 12.2 |
| 1984 | 13.3 |
| 1985 | 12.4 |

This demand projection is obtained by taking the demand projection from the WEFA model as a base and superimposing on that a cyclical pattern similar to the one observed during the last ten years. More specifically, the cyclical pattern superimposed is such that the difference between the peak and trough of a cycle is 2 million cars. It should be noted that the average demand per year under this scenario is the same as that under the Nominal scenario. In all the three scenarios, all data besides the total demand is the same as in the Nominal case under the Nominal scenario.

In order to better capture the effect of cyclicality, a small change was made in the model when the cyclical demand scenario was analyzed. In this model, some of the costs are semi-variable; these costs are: Selling and General Administration, Research and Development, and Maintenance, Repair and Rearrangement. In reality, such costs tend to be semi-variable upwards but fixed downwards. That is, when reventes go up, these costs also go up (though not proportionally), but when revenues go down, these costs tend to remain fixed. This behavior is particularly significant in a cyclical demand situation. Therefore, this feature was incorporated in the model only for the cyclical scenario. To that extent, the results of the cyclical scenario are not strictly comparable to the results of the other scenarios. However, because the demand in the other scenarios has very little cyclicality, this feature would not significantly affect their results. Therefore, the results of the four scenarios are fairly comparable.

TABLE 5-11. COMPANY G POSITION IN 1985

Nominal \begin{tabular}{c}
High

Demand

\quad

Low

Demand

\quad

Cyclical

Demand
\end{tabular}

Sale	5.9	6.2	5.7	5.9
Breakeven	2.7	2.7	2.6	2.7
	4.3	4.6	3.9	4.3
After-tax profit	-15.2	-17.4	-13.0	-15.0
Long-term debt	27.1	29.4	24.7	26.9

TABLE 5-12. COMPANY F POSITION IN 1985

Nominal \begin{tabular}{c}
High

Demand

\quad

Low

Demand

\quad

Cyclical

Demand
\end{tabular}

Sale
Breakeven

After-tax profit Long-term debt
Retained income
2.7
2.84
2.58
2.71
1.4
1.45
1.39
1.42
1.2
1.32
1.11
1.21
-4.7
10.8
-5.47
-4. 08
9.97
-4.67
10.7

TABLE 5-13. COMPANY C POSITION IN 1985

High	Low	Cyclical
Nominal	Demand	Demand
Demand		

Sale
Breakeven

After-tax profit
0.05
2.5
0.08
1.70
1.54
1.6

Breakeven

Long-term debt
Retained income
1.6
1.55
1.50
1.6
0.59
2.38
0.02
0.04
1.5
0.76
2.62
2.63
0.42
0.53

TABLE 5-14. COMPANY A POSITI IN IN 1985

	High	Low
Nominal	Cyclical	
Demand	Demand	Demand

Sale
Breakeven

After-tax profit Long-term debt Retained income
0.25
0.26
0.24
0.25
0.35
0.35
0.35
0.37
-0.06
0.88
-0.30
-0.07
-0.07
0.93
-0.34

Tables 5-11 to 5-14 present the results of the three scenarios analyzed here and of the Nominal case. As is to be expected, all manufacturers perform better under high demand scenarios and worse under the low demand and cyclical demand scenarios. The results yield another, and more interesting conclusion. Table 5-15 gives the change in long-term debt position in 1985 under the various demand projections compared to the Nominal case. It can be seen that Companies G and F are not affected very much by the cyclicality in demand. For Companies G and F, the effect of a persistently low demand is much more significant than that of cyclicality; the effect of low demand is of the order of 13 to 14 percent, while that of cyclical demand is only about 1 percent. For Company C, the effects of low demand and cyclical demand are equally significant; both worsen the debt position by 5 percent. While for Company A, the effect of cyclical demand (6 percent) is more significant than that of low demand (2 percent).

TABLE 5.15 CHANGE IN LONG-TERM DEBT POSITION IN 1985, COMPARED TO THE NOMINAL CASE

	High Demand	Low Demand	Cyclical Demand
Company G	-14%	14%	1%
Company F	-16%	13%	1%
Company C	-5%	5%	5%
Company A	-3%	2%	6%

APPENDIX A

Results under the Nominal Scenario

The computer printed results of two cases under the Nominal scenario are presented: the Nominal case, and the Probabilistic case. In the Nominal case, the full financial statements have been printed out only for 1977 and 1985, while a summary of the financial statements has been printed for each year.

Probabilistic Case

POSITION AT END OF YEAR 1985

\[

\]

Company G

DE:HT	-15704.	-13973.	-12676.	-11121.	-9700.
RET TNCOME	23680 .	24302.	25723.	26319.	27535.
AFTOIAX PROFIT	3852.	3972.	4168.	4277.	4396.
FUEL ECONOMY WITHOUT					
MIX SHIFTS	24.11	24.32	24.67	25.12	25.34

Company F

DEA	- 4688 .	-4031.	03502.	-2698.	-1948.
RET JNCOME	9063.	9451.	10028.	10299.	10704.
AFT-TAX PRDFIT	957.	1018.	1079.	1124.	1184.
FUEL ECONDMY WITHOUT					
MIX SHIFTS	24.10	24.31	24.64	25.07	25.29

Company C
DEBT
RET NNCOME
2356
-136
-860
24.41
2769.
25.
-39.
3125.
$312.508 \quad 727$
AFT-TAX PROFIT FUEL FCONOMY WITHOUT MIX SHIFTS
24.63
24.97
25.36
25.61

Company A

DEHT	874.	948.	1042.	1106	1225.
RET JNCOME	- 536.	-471.	- 406.	-347.	-309.
APT-TAX PROFIT	-100.	-90.	-81.	-73.	-64.
FUEL ECONOMY WTTHOUT					
M\&X SHIPTS	23.45	23.59	23.84	24.04	24.21

Nominal Case

Company G

Company F

income statement for year 1979

 10689.5
SALES REVNUE VARIABLE COSTS

 FIXED COSTS
SEL AOM

RES GDEV
MAIN REP. REA.
RETIREMENT
NONEINCOME TAX
DEPRECIATION
AMORTISATION
INTEREST
1904.6

PREOTAX INCOME
INCOME TAX
AFTEROTAX INCOME 983.0 448.3
534.8

```
466.1
316.1
338.4
155.3
247.7
109.0
195.5
76.6
    76.6
```

CASH FLOW STATEMENT FOR YEAR 1977
IISES
NET INCOME DEPRECIATION AMORTISATION TOTAL

SOURCES

LAND GBLDG
M/C GEOPT
TOOLING
OTHER ASSFTS total
534.8
109.0
195.5
839.3

CAP INV
DIVIDEND
DEAT RKill
TOTAL

BALANCE SHEET FOR YEAR 1977

873.3	EQUITY	121.8
1149.2	DEBT	278.1
391.7	RETAINED INCOME	3937.8
1923.6		
4337.7		
433.7		

254.7

Company C

TNCOH\＆STAIFMFNT FOH YFAR 1977

```
SALES HE,VNMF
VARIAMLF COSTS
HIXED COSIS
    SEL AOMA 223.3
    RES ADFV
    MAI** HEP. NRFA.
    HETIKFMENT
    NON-INCOMF TAX
    OFFFECIATTON
    AMOKTISATTIN
    1MIビRF゙ST
PRF=TAX INCOMF
INCONETAX
AFTFR=TAX INCOTMF
                                    6115.9
                                    54%0.3
                                    1029.8
                                    -4114.7
                                    -154.0
                                    -745.4
```

```
1.35.4
```

1.35.4
215.9
215.9
110.3
110.3
111.8
111.8
43.2
43.2
127.9
127.9
6%.2

```
    6%.2
```

SOHRCFS
DEPRECIAIIUN AMORIISATIUN DEAT INC TOTAL

CASH FLUN STATFMF゙NT FilR YR゙AH 1077
！ISHS

41.2	NHT I，ISS	715.4
127.9	CAP INV	145.5
237．4	DVVアOrNM	11.
403.5	TOTAL，	413.

HALANCF：SHFFR FOR YFAR 1071

571.3	EOUITY		233.4
325.11	OERT		$\times \times 7.9$
245.1	RETA1（VE）	INCOMF，	1257.
1871．2			
2373.7	THT		2373.

Company A


```
SAlF゙S VEVANF
VARIAMLE COSTS
FIXFN CUSTS
    SFI A AL, A
    RES HIPV
```



```
    以EのIKF:AR1
    HDN=IACIAFT TAX
    のEFEECIAT1IF
    AMOLTISATTION
    INTFFRF, I
71.0
11.
16.5
17.3
    7.8
    4. 3
    9.5
```

 7ヵ8。2
 FRF TAX IV COMA
INCMME fAs
145
-31.6
A゙ロTEFOIAX INCいHE゙

CASH HI，MN STATHAENT FAK YHAK 1977 115 B
SHOFCFS
DEPREC』ATIUN AMOHTISATION DFHT IHC TOTA！．
7.6
9.3
92.4
149.4

1FT HOSS
73.7

CAVIVV 31．1
CTVIDE゙ん！ 4.1
109.1

HAIAMCE SHFHT FOR YEAR 1977
LAND mPITC
M／C \＆\＆GOT
IOnI，ING：
OTHFH ASSETS
TOTAL
46.5
81.5
77.4
197.1
355.4

F（J）］TY
34.2

1FトT 183.1
HFTAIHFH INCIMF $1 \geqslant 3.1$

To＇TAL
355.3

MIX PROOUCFO
MIX DESIRED
Wr＊PRICE

LAPTE MIDOSIDE
i）． 26 H
1．203
n315．
0.149
0.305

792

COMPACT
SUMCIMPACT

1）． 225
（1）． 208
4747.
0.317

0． 224
326 b 。

CO．G
5.100
$1.39 n$
0.213
2.220

1）． 455

Co．C
Co．A

$$
25368
$$

$$
2109 .
$$

$$
2243 .
$$

$$
1400 .
$$

$$
159 .
$$

$$
3+3 .
$$

$$
4315 .
$$

？． 330

$$
\begin{array}{r}
10490 . \\
535 \\
255 \\
0 . \\
449 \\
278 \\
7034 .
\end{array}
$$

Co． F

$$
1.537
$$

$$
\begin{array}{ll}
61160 & \text { in } 1 . \\
-215 & =74
\end{array}
$$

－245．－74．
146． 31
1月． 1 。
－23？．
-92.
883.
1257.

10．6n 2n．57

SALE（MILLTUNS）
hevfalle：
NET INCOME
CAD INV（TCT）
CAP INV（ARHS）
NET CASH FLOW DEBT
RET INCOMF

FUEL ECONOMY WITHAIIT
MIX SHIFTS

SHMMAFy	STATtAFNT	Fiik Meat	1978
L，APCF	（a） $10-517 \%$	COAFACT	जいムC0いいA
0.191	0． 271	11.226	0.314
0.343	1．274	0.190	1）． 225
8200.	0137.	＋64：。	30ヶ3．

Co．G

CO．F
Co．C
CO．A

SALF（MILLIONS）	5.281	2.400	1.139	0.221
BREAKEVEN（MII．）	3.092	1.563	）．075	1）．100
VNリビ	20191.	11065.	－ 24.8.	878
NET INCOME	2333 。	Hul．	－215．	－＋10
CAP INV（TOT）	3104.	79.	179.	A」。
CAP INV（AHES）	2210.	511.	3 38．	33.
NET CASH FLOW	114.	77.	－188．	－123．
UEHT	279.	201.	1370.	48.
RET INCOME	9\％2H．		回。	dr．
GUEL ECONOMY WIT MIX SHIFTS	24.14	19．4n	21.78	10.17

SUMMARY STATEMENT FOR YEAR 1979

MIX PRODNCED
MIX DESIRED NEW PRICE

JARGE
0.192
0.339
8290.

MID－SIZE COMPACT
0.2720 .226
0.2520 .210

5663．4919．

SURCOMPACT
0.310
0.227

4015 。

Co．G
5.274
3.007
25705.

2365 ．
1853. 960.
1291.
-1012.
11372.

Co．F
2.406
1.531
11074.
725.

1549 。
1294.
-312.
513.

499？

Co．C
1.436
1.830
0.220
0.32^{8}

6308.	899.
－155．	－54．
323.	72.
192.	41.
－245．	－99．
1015．	406．
864.	－11．

FUEL ECONOWY WITHIIIT
MIX SHIFTS
20.75
20.53
20.90
20.13

SUMFIARY STATFAENT	EOR YEAR	1980	
LARGE	MTO－SIZF	COMPACT	SUACOMPACT
0.194	0.274	0.226	0.307
0.333	11.254	0.219	0.213
H2112．	5074.	4981.	3944.

Co．G
5.405
2.90 A

SALE（MILLIONS）
BREAKEVEN（MIL．
REVENIE
26275
2625.
1727.

A34．
1593.
－ 2604.
13176.

NET INCOME
CAP INV（TOT）
CAP INV（AFES）
NET CASH FLOW
DEBT
RET INCOME

Co． F
Co．C
Co．A
i． 274
11.254
5074.

49月1。
3944.

PUEL ECONOMY WITHOHT
MIX SHIFTS
20.94
20.81

2！． 91
20.86

SIIAMARY STATEMFNT FOH YEAR 1 马ス1

MIX PRODUCEU
MIX DESIRED
NF，PKICE

LARCR
0）． 94
0.337

8147 。

M丁口—SIZ，
CIMPACT
SUHCDMPACT
0.275
（1． 224
0.308

1）． 2.5 R 0.230
0.196

5737 ．
5041.
3713.

Co．F

2．н＇ 17
1．bけの
（1． 241
1．142
1．679
11.27 R

REV\＆NIE
20814．
123n1。
7057.
901.

NET INCOME 3072.

1054。
－ 34 。
-23.
CAP INV（TUT）
CAP INV（AFFS） 2074.
1136.
1755.
439.

月のロ。
09 。
が社。
かんの。
3A.

NET CASH FIUN
－ 3360.
15317
RET INCOMF
－5：7．
－ 3 R．
2．2．1．
hn9．

吹。
－7d．

FUEL，FCINDMV ETHIUT MIX SHIHTS

7？．117
21.95
21.6%
71.12

SIMMAAKY	sratriarivt	FUR YEAR	1487
1．A以淮	MTH－ST\％F	C川NFACT	SIACOMPA？
（1．17 F		11.226	ก． 227
0.341	1． 357	11.227	ก． 100
839？．	590）．	5027 。	マคのい。

Co．G
Co． F Co．C
Co．A

SALF（MIJI，IONS）	5．がい	2．n71	1.570	0.235
BREAKFVKH（MIU，	7．8177	1．401	1．0ho	1）． 290
REVENIF	2MH12．	$1 ? 127$	041．	931．
NET T NCOME	3315.	11110	－12．	－32．
CAP InV（TOT）	1724.	433.	249.	$\cdots 5$.
CAP INV（AYES）	－27．	） 71	InR．	54.
NET CASH FLOW	？296．	1053.	－79．	－${ }^{1} 1$.
DEBT	－665	－1453．	27．30．	¢70．
HET INCOMF	17471．	1nt 1.	－${ }^{\text {R }}$ 。	－11 \＄．
FUEL ECONIMY WITHOITT				
MIX SHIHTS	23.10	22．08	22．43	21.30

SUMMARY STATEAENT FOR YEAR 1983

MIX PRODUCED
MIX DESIRED NEW PRICE

LARGE
$0.15 n$
0.347
8835.

MID－SIZE
COMPACT
SUBCIMPACT $0.256 \quad 0.235$ $1) .258 \quad 0.227$ $6367 . \quad 5002$ ．
0.359
0.192 3786.

Co．G
5.761
2.789

28772。
35ヶ1。
1917.

1024。
2399．
-9055.
20611．
RET INCOME

Co．F
Co．C
2.628
1.569
1.606

$$
0.241
$$

$$
0.317
$$

6731.	957.
－19．	－49．
314.	77.
183.	46.
－44．	－69．
2274.	739.
607.	－168．

PUEL ECONGMY WITHOUT
MIX SHIFTS
23.97
23.47
23.37
21.90

	SIMMAKY STATFMENT FOF YEAR	1984		
MIX PRODUCEO	IURGE	MID－SIZE	COMPACT	SUBCOMPACT
MIX DESIRED	0.130	0.245	0.244	0.380
NEW PRICE	0.354	0.260	0.227	0.186
	9197.	6794.	4952.	3715.

Co．G
Co． F
Co．C
Co．A

SALE（MILLIONS）	5.849	2.6669	1.593	0.244
BREAKEVEN（MIL．）	2.789	1.427	1.673	0.345
Revenile	29411.	11880	6929.	860.
NET INCOME	3832.	1136.	－41．	－60．
CAP INV（TOT）	2077.	832.	604.	67.
CAP INV（ALES）	1145.	577.	473.	36.
NET CASH FLOW	2545.	$7 \mathrm{H4}$ 。	－298．	－72．
DEAT	－11650．	－3645．	2573.	911．
RET INCDME	23622．	9675.	554.	－233．
PUEL ECONOMY WITHOUT				
MIX SHIFTS	24.92	24.59	24.94	22.84

Company G

IMCOME STATEMFHT FOR YE゙AR 1985

SAIES KEVRUIE VARIAHLE COSTS

$$
\begin{aligned}
& 27843.3 \\
& 16774.2
\end{aligned}
$$

FIXET COSTS
SEI A AUM
RES REV
HAIN，PEP．\triangle REA．
HETIKFNENT
NON＝INCOMF TAX
DEPRECIATION
AMORTISATION

$$
\begin{array}{r}
859.3 \\
817.7 \\
9630.5 \\
447.0 \\
645.0 \\
553.1 \\
936.5
\end{array}
$$

OPEKAIING PROFIT
INTGREST EAPNEN
FRF－TAX INCOMR．
INCOAR TAX
NET INCOME゙

$$
\begin{aligned}
& 5914.1 \\
& 7720.0 \\
& 4110.0 \\
& 4020.11 \\
& 3761.4 \\
& 4250.6
\end{aligned}
$$

SUHPCES

NET INCOMF．
DEPRECIATION
AMORTISATIIN IOTAに，

CASH F゙ROW STATFAEHT F゙NR YF．AK 1085

425．6	EAP INV	1393.7
553.1	O！1 TREMJ	प21．1
936.5	の世FT Kせい	3533．
5748.2	「OTAL	47.14 .2

HAI．ANCF SHFET FOH YFAR 1985

LAMD \＆KHLDG
M／C \＆KOPT
TOOLING
OTHER ASSETS
CREDITS
TOTAL
2679.5
4458.1
736.5
3196.11

15183．5
27453.4 TUTAL $27+53 .+$

Company F

Company C

INCOME STATEMENT FOF YEAR $19 H 5$
SAIES KHEVNUE VARTABLE CUSTS 71ロに．！ FIXFD GUSTS
SEL \＆ADM
211.0
RES GDHV
MAIV R KFP．AFA．
149.3
240．7
RET LKFHENT
110.3
NQN－INCUMF TAX
DFPRECIATIUN
AMDKTISATTIJN
INTEREST
$111 .{ }_{1}$
49.0
231.1
223.6

PREFTAX INCIJR
INCOME TAX
AFTFROTAX INCO＊E

SOUPCES
NETT INCOME
DEPRECIATION AMORTISATIUN T0TAL．

CASH E゙HUW SIATFMFNT FOR YEAH 1995 IISE．S

51.1	CAFINV	294.7
99.11	IIVIOFAD	11.7
231.1	OEFT HFD	75.1
391.2	TUTAS	311.2

LAND EBLDG
M／C EBOT
TOOLING
DTHER ASSFTS TOTAL

INCOME STATEMENT KOR YEAR 1985

SALES REVHIIE VARIABLE COSTS 871.5 659.0

FIXED COSTS
SEL \& ADM
93.2

RES LDEV
24.1

MAIN, REP \& REA.
RETIREMENT
NON-INCOME TAX
DEPRECIATTOM
AMORTISATTON
INTEREST
PREDTAX INCOME
INCOME TAX
AFTER TAX INCOMR:
298.4
-45.9
-25.8 -60.1

SUURCFS
DEPRECIATIUN
AMORTISATION
DERT INC total

LAND BLDG
M/C EFOPT
TOOLING
OTHER ASSFIS
RETAINED LOSSF.S TUTAI.

CASH FLOIW STATEMENT FOR YEAR 1985
USES

18.8	NHT LOSS	60.1
39.8	CAPINV	58.2
64.7	OIVIDEND	4.7
123.0	TOIAL	123.0

BALANCE SHEET FOK YEAR $19 \& 5$
85.0 EOUTTY 39.2
215.4 DFRT 875.2.
119.3
197.1
297.6
914.4 TOTAL,

MIX PKODUCFい
MIX OESSIREい
NEF PRICE

SITMAARY	STATEMF．！T	FOH YG，AF	1975
1．AFGE	M10－517．F	C！AFACT	SUACINPACT
0.111	3． 2.33	（1．257	ก． $4 \cap$ ？
1）．357	（1． 254	1）．221	$\bigcirc .143$
95 ¢9．	71%	1941.	3649.

Co．G Co．F Co．C Co．A

SALE（MILLTINS）
BREAKFUEM（MIT．）
5.734
2.710
1.617

ก． 214
1.414 1．52h $0.3+x$

REVENUF			79893．	11945	71 Fh．	471.
NET	INCO	ME	4259.	1717	51.	n． 3
CAP	INV	（TOT）	1344.	$5: 1$	294.	54
CAP	INV	（AトFS）	5111	324	163．	27
NET	CASH	Flow	3537.	10 Cl	75.	わ ${ }^{\text {b }}$
DEHT			－151＊4．	－1772	2498.	－13
RET	INCO	ME	27！n＂。	10756	5.11 。	－ 290

FUEL ECONOMY WITHOUT MIX SHIETS 25．15 25．11 25．1．21．15

APPENDIX B

Protocols for the Computer Program

To facilitate usage, the computer program has been written such that it can accept some data interactively, i.e., by the user inputing the data at the computer terminal rather than through a data file. When the program is run, the computer asks the user to specify some data. With reference to Protocol 1, the first four requests for data are self-explanatory. "Number of technological options" means measures such as improved lubricants, accessories, etc., but not downsizing and material substitution. In this context, there are six such options: automatic trans nission, manual transmission, lubricants, accessories, aerodynamic drag and rolling resistance. Next, the computer asks whether the user requires deterministic analysis, as opposed to probabilistic analysis. If deterministic analysis is required the response is "Yes." The next three questions are self-explanatory.

If the user requires probabilistic analysis, he should respond "No" to the question "Require Deterministic Analysis?" In that case, the computer continues requesting data as in Protocol 2. The number of runs in the simulation is the number of separate trials in the Monte Carlo simulation. It was found that 50 trials are adequate. The odd integer number is to initially start off the random number generator. Next, the computer needs to know the distribution of the various fuel economy related variables. If the user responds "Yes," the computer assumes that the data is distributed according to a truncated normal distribution. If the user responds "No," the computer assumes that the distribution is uniform. Finally, there is a computer data file which contains the parameters of the distributions of the various variables as subjectively assessed by an industry expert. If the user responds "No" to the question "What to change data?" the computer will use the parameters from the available file. However, the user can change the parameters by responding "Yes" to the above question.

RUN AFES
SPECIFY OUTPUT DEVICE (S FOR TTY.3 FOR LPT) : 3
SPECIFY THE FIRST YEAR OF ANALYSIS 77
SPECIFY THE LAST YEAR OF AHALYSIS: 85
SPECIFY SALES IM UNITS FOR GH. FORD, CHRYSLER, AMCIH THAT ORDER FOR YEAR 1976 : 4.883E6, 2. 228E6, 1. 33E6, 0. $204 E 6$
SPECIFY THE TOTAL NUMBER OF TECHNOLOGICAL OPTIONS USED 6
REQUIRE DETERAINISTIC AHALYSIS? YES
FIMANCIAL STATEMEMTS FOR HHICH FIRMS: ALL
FINANCIAL STATEMENTS FOR NHICH YEARS: 77,85
SUMMARY STATEMENTS FOR NHICH YEARS: ALL
EXIT

RUN RFES

SPECIFY OUTPUT DEYICE (S FOR TTY, 3 FOR LPT) 3
SPECIFY THE FIRST YEAR OF ANALYSIS: 77
SPECIFY THE LAST YEAR OF ANALYSIS: 85
SPECIFY SALES IN UNITS FOR GH, FORD, CHRYSLER, AMC
IN THAT ORDER FOR YEAR 1976 : 4. 883E6, 2. 228E6, 1. 33E6, 0. 204 E6
SPECIFY THE TOTAL NUMBER OF TECHNOLOGICAL OPTIONS USED: 6
REQUIRE DETERAINISTIC ANALYSIS? HO
HUMBER OF RUNS IN THE SIMULATION 56
SUPPLY ANY ODD IMTEGER MUMBER: 579321
FUEL ECONOMY GAINS FROM TECHNOLOGICAL OPTIONS DISTRIBUTED NORMALLY ? YES
WRNT TO CHANGE DATA? NO
ADDITIONAL MANUFACTURING COSTS DUE TO TECHNOLOGICRL OPTIONS DISTRIBUTED NORMALLY? YES
HANT TO CHANGE DATA? HO
CRPITAL COSTS FOR TECHNOLOGICAL OPTIONS
DISTRIBUTED NORMALLY? YES
WANT TO CHANGE DATA? HO
CAPITAL COSTS FOR DOWHSIZING DISTRIBUTED NORMALLY? YES
HAHT TO CHANGE DATA? No
CAPITAL COSTS FOR MATERIAL SUBSTITUTION DISTRIBUTED NORMALLY? YES
HANT TO CHANGE DATA? NO:

APPENDIX C

Computer Data Files

The computer program for running the model requires six data files. The files are:

Name of Data File	
MARKT.DAT	Madules to which the file supplies data
FUELE.DAT	Fuel Economy
COSTS.DAT	Capital Costs, and Variable Manufacturing PRICE.DAT
Costs	
FINAN.DAT	Price
RANDM.DAT	Finance, and Proforma Generator
	Used only in the Probabilistic Case (contains the parameters of the probability distributions)

The data files in the format requi ed by the computer program are given in this Appendix.

MARKT．DAT

0．0，0．0，0，2，0．8
0． $5648,0.2577,0.1538,0.02359$ 76，10．2E6．0． 2
77，11．3E6，0． 2
78，11．6E6，0． 194
79．11．5E6．188
80．11．アE6．©．182
81，12．7E6，0． 176
82，12．5EG，ㅂ．170
83，12．2EG．©． 164
84，12．ЗE6，0．158
85，12．4EE，ロ． 152
86，12．2E6，ロ． 150

16．5．17．日，2日，日，24．日 15．5．16．0． 18 日．21．日．

（1） 132 B 日．2474，区．

79．80．78．79
79．78．81．
［1，78，80， 79
4158．6．524．日，285 日，2229 日

211．日， 547 日，295 日，206 日

82，E6，84， 86
$84,85,82,84$
$86,82,86,5$
6．84．85． 86

¿6G1．日，2eG 日，2G5．日．2以

4158 ， $4,4 \mathrm{~B}$

4564．日，4184．日，25E，区． 2 日

（1）日，日，区．日，日，日 日，日
■．日，区，区，区，区，日，区，区

区 区，区．日，区．区．区，区 区，区 区
ア8，18 区，日，区 区
（1）区，区，日，区，日，区，日，日，日

区．日，区．日，日，日，区，区，区
（1）日，日，日，日，日，日，日 日 79．19．日，区．区．区
…，日．日．日，日，日，日．日，日
区．区．区．区．日，日，日，区，区，区
日．日，日，区，日，区，区，区，区
（6）日，日，区，日，日，日，日，区
80，20．日，日，区．区
（1）日，日，日，日，区，日，日，日
日．日，日，日，日，日，日，日，日
（a）日，日，日，日，日，日，日，日
6．日．日．日．日．日，日．日．日．日


```
%24.0日, 6, 日1
11.4.9.07, 4 4.64.5%.94
[1.4.E.1日. 5 4.54.5 F.54
```



```
&,26.0.0日, 日昭
```



```
4.75.4 15, & & & & & & & 
#7, (5 15, & &, &゙.日 &., &
4. 25.0.1日.日 8.4 4.87.87
85.27.5.0日, 且 E1
```



```
4.6 13.1 &, & &., & & & 
```


COSTS.DAT

FINAN．DAT

 0．14，日．日S．日．日3．日．日s

6． $469,4.46,0.35,3$
？ 085,1 115．0．05．日，12
万07．日EG．414．GEE，145．2EG．24．SEG


```
19.4,25, %, E, E
4.45,5 日, 5, 5, 5
7 5, 1% 日, 5 5. 21. 区
7.5,10 6, 5, 5, E1 
265,25 6,134.74, 1
```



```
日, 日, 日, 区, 区, 日, 日, 区
18,75, %5,12, 7.5,5,5
4.0,0, 日, 日, 日, 日
G. 日, 日, 日 日, 日
```


APPENDIX D

Computer Program
AgT0 lablsigy kisk analysis

C

NHA! =1
Wakl $=20$
Cut $11 \mathrm{~L}=21$

MPMCr=23
\because F1: $=$?

 $10 \quad 1500 \quad 3=1.4$

 yceuman (1's), CCotirv(10)

H11 $\left.\right|^{2}$ ヒ=1 (i) 1075 ?

 format (ff)

 GCCMIMICCEAXI, WOFTI

flakar (14/4F)
phelimitary fafi uf futl fromplay mudule

REAU (MFHFLLABM) CFUEL,CP:IX,NTIMNT, WTDH,NTIMMT,

U(150) J=1.4
明 $1511 k=1,4$
1501 XCPMIX(K,I)=CPM1K(K, I)
freliminaky pafl uf tha cafilal coists munule
DPMENSIUN CCOST(1.)), CAPFE(4)
CALL IFILF: (NCOSI. "COSTS.NAT')
RFAD (NCOST,55n) CCUOHW,CCOMTL, (CCUST (NUM), NUME1, NUPT)
formal (15 t)
PKELIMINARY PART LIF THE MANUHACTURING COSTS MOUULE
DIMENSIGN ACOST(1) , XMCOST(4$), \operatorname{XLCOST}(4)$, PVARCO(t)
HEAU (NCUST,5Q(I) XMCOST, XICCOST, (ACOST(NLIM), NUM=1, NOPT)
FOHMAT (4F/4F/15F)

C	PHELIMINARY PART OF THP PRICE MDDULE
	UIMENSION XMKTMX（4），CURPRC（4），ACTMIX（4），ACTPRC（4）。
	9ILUUCPM（4），ACTCPM（4）
	CALL TFILEP（NPRICE，${ }^{\text {PRRICE．DAT＊}}$
	FEAU（NPRICE，70U）AVPKC，CURPRC
700	HOWMAT（5F）
C	PRELIMSNARY PART OF THE FINANCIAL MODULE
	9ANHLNH（4），ANNMNE（4），ANNTML（4），DEPLNB（4），AMOPER（4），RETPRO（4）。
	9ПEPMNE（4），RATINT（4），TAXKAT（4），DIVDND（4），OTHCAP（4）
	9．SIMUEH（100，4），SIMRFTZ（100，4），SIMPRO（100，4）
	CALL IFILPE（NFIN，${ }^{\circ} \mathrm{FINAM,DAT*)}$
	YANMLNH，AINHNE，ANNTOL，DEPLNH，DEPMNE，AMOPER，RATINT，
	GTAXKAT，DIVIND
710	Foknat（10）（tヒ），5（4F／），4F）
C	QRFLIMINARY PART IFF THE PRUFORMA GENERATOR
	DIMENSIUN S：VA（4），KND（4），XMRR（4），RET（4），OTHTAX（4）
3001	HEAL（NFIT， 720 ）SNA，HND，XMRR，RET，OTHTAX
720	HOHMAT（S（4F．／））
	1F（IIET＝1）753．754．753
753	On 758 NUM＝1，NOPT
	1F（IFN－1）755．956，755
756	
	Gい10757
755	
757	1F（1ACUH01）759．750．75\％
760	
	G0 10701
759	
761	」t（TCCOisel） $76 \%, 703,762$
763	
	（in Ti）15a
702	
75 R	CONIINUF
764	1．t（1UUWN－1）770，771．770
171	
	（G）TU 772
770	
172	1＋（1SHHA＝1）773．774．773
774	CALH，GAlSS（IX，SOBOEV，SUHMN，SUBMJN，SIBMAX，CCOMTL）
	¢01］ 707
773	
C	
C754	UHIIIAL．ISNTM！
	U0）－J＝1， 1
8	Phtilec（1），1）$=0$
	Uก） $790 \mathrm{~J}=1.1$
	1）！ $190 n=1.1$
790	
	G0110 5 （1）
25	
504	

 9at．IGHI，FIFLGA，IECHUN，I世FUEL，HRT，YEAK，XNPMIX，MDPT，HYPUAV，XCPMIX）
CALL CADCUS（IWFI，CAFFK，TFCHUP，SAI，F，DRETEC，PHFSAI，CCOST，

9nis）［，ACHSI．TFCMIF，IVAKCO）

ЧXMFITK，SAI，CWHFKC，ACTOHC，AVPHC，TSABE，ACTMIX，XMKTMX）

CALI FIMAIC（RVLUK，CADFE，ANMLAB，BVMNF，ANNMNF，

CALL FROFRM，（J，HWFT，XIGFMIX，ACTPRC，SNA，DIV，SALE゙，
GKND，XMRF，KFT，ПIHIAX，Dr．

GIDET，SIMIHH，SITHET，SIMPHO，MT，HYPOAV，SIMHYP）
C
KEIAINING，PREVIUUS YEAR IIA＇TA

PKESAL（い）＝GALE（J）
リC 81 NE1． 1

い以 H0 1 TU＝1，HกfT
Pherec（110，1）＝TECHOP（1TO，J）
Crint INUE：
1F（10ET＝1）9900，2000，1900

1900
WK11E（NKRT，1901）NENO

（in TO（19！2．1013．1901．1905）J
WHDTE（WWPT．2902）
FOKMAT（T\％。＂GFNERAL MOTOKS＂）
GO TO 190 on
WHITE（WWHTO2903）
1903

1911 ARHAY（IX） 5 S 1 MPRO $(N X, J)$
CALL SIMUI，A（NTIME，ARRAY，FRA10，FHA25，FRA50，FRA75，FRA90）

```
    WFIIH: WWRT,1912JFHA1U,FHA25,FKRASO,FRA75,FRA90
```



```
    ON 1980) AX=1, IVTIME
1930 ANHAV(GG)SSIMHYP(NXOJ)
    CAIL, SI'AlIIA (NTIMF,ARHAY,FRA10,F'HA25,FRA50,FRA75,PRA90)
    W1FF (NWRT,1931) FHA1%,FHAZS,FRRA50,FRA75,FRA90
1931 FOHMAT (17, 'FHFLECGNIIMV NITHOUT'/T7, "MIX SHIFTS*,T27,
    9F&.2.l'37,FR.2,147,FG.%,T57,Fq.2,T65,FH.2///)
2800 COMIIN.llt
20リ0 STVF
    &?N
```



```
    NFITF(5,10年)
```



```
    NKITF (.3.103)
    GO ll| 104
10%
110
                            JPR(1,)=1
    G0 10 131
```

```
    N211t (5.11!)
```



```
    IF !!{={1111.11%.111
```



```
    (% TO 1HN
    **\16(5.1)3)
```



```
    CAIL AMSNEX (&,1A,Hr゙|r)
    if (|A=1)11t.1)b.114
    WFlif(5,103)
    GO TH 112
    14 (&STAFr=14,1j)11not17.117
```



```
    心乡ョ:\STAF'l=1+100)
    wplTF 65.117) M.r
```



```
    1F(1A-4):2n.121.12"
    WFITE. (5.113)
    Gu ro 11%
    IF (Nni<x@1) 122.173.127
    wpitr: (5,113)
    (%)TO 11N
```



```
    w+1lf:(5,124)
```



```
    Q OFTIUHS HSFr, & "5k,S)
    CALL AWSWFX (2,IA,HiJNT)
    If (1A-4)176.127.170
    WHITF (5.103)
    Cire In 125
    WH11E (5.151)
```



```
    CABI AMSWFX (O.IDF!,MilNX)
    1F(10F7-11140,1127.140
    127 Un 1170 1 31.10
    1S|M(T,) =r.
    l PH(1,)=0
    WH1T&(5.150.)
    FOH:AAT(O FINANCIAL STATFMENOS FITR NHICH FIKMS&',3X,S)
    CALL ANSWEX (7,IA,M|FX)
    1F(NORX) 17.0.129.1/8
    00 130 l.81.4
    IF (N\capHX=1) 137,139,137
```

137
4.118 (5.1:1)

61: 11112 h
139
131
151

wllf (5, 1a)

if (1.1んy) 137.133.1:?
133
137
134
152

136
135
140
$1+111 \geqslant 0 \mathrm{Cl}$
Go ! ! 13.

w.1! (5 -15?)

(in If lif


```
    OIMr.NSION XMFAH(N), llFV(NI, KMINPN), XUAX(N)
    NW||F(5,1)
    FCHMMT (* WARIT TM CHANGE IIATA?*. 3x,0%)
```



```
    JF (TOl/m-1)P.4.2
    If(P-1)G.6.5
    WH1/F(5.7)N:
```



```
    CA!L. M!SNFX (7, |A, HilHX)
```



```
    If (un+X=il)n=A.b
    wP\TF (50.子11
```



```
    CAI, A「SuFx (7.1A,Mnx)
```



```
    If (m|FX=.*):.3.A
    wR|fF (5.10|?:
```



```
    Ir (:G\FX=:)5.11.5
    wに!|(501つ)!
```



```
    !r (mafa=.111.2.11
    N&「い!%M
```

51 SUHFOUTVIUF GAHSS(IX,S,AM,XAIV,XMAX,V)

Un 50 $1=1.17$
50 CAli, PA:H)! (VX,Y) $A=A+Y$
$v=1 A=6 . n \mid \omega S+A M$
IF(VヵXiA UN) \&1.52.5?
$\begin{array}{ll}52 & 1 F(\forall 0 \times M A x) 51,53,51\end{array}$
HFTlior

IV ix $1 \times 65^{5}=19$

5

$\mathrm{YtI}=1 \mathrm{Y}$

1×天IV
RETUR

Cale RAM[H? (x) y)

RHTUR为
 U\｜PB：NSIMN SRIE（4）R＂MSHNF，（4）－

1
501

2

3

26
 －numat（1，tropl）

FSALFETSAIFHFMSHIRF
りの 3 1El．1
 REIU艮か HFPTION？

SHBROUTINE FUEL（＊，CFUEL，CPMIX，NTIMWT，WTDN，NTIMMT，WTMTL，KEIGHT， 9FUFLGA，TECHOP，NFUEL，NWRT，NYEAR，XNPMIX，NOPT， 9HYPOAV，XCPMIX）
VIMENSINN CFUFL（4，4），MTIMWT $(4,4)$ ，WTDN $(4,4), \operatorname{HTIMMT}(4,4)$
9，WTMTL（4，4），WEIGHT 4,4 ），FUELGA（10），TECHOP $(10,4)$ ，
9CPMIX $(4,4), X M P M I X(4,4)$, HFUEL（4），HYPOAV（4），XCPMIX $(4,4)$
REA1）（NPUF，L，GO゙2，ERRE27）NOW，AFES，EMISS。
9SAPETY，（（TECHOP（NUM，J），NUM＝1，NOPT），J＝1，4）
FOMMAT（］．3F／3（6F／），bF）
CALCHPATE WFTGHT OF CAR HY SIZE AND BY MANUFACTURER ANM
FHEI，CONSIPMPTION COHSIDERING CHANGE TN WEIGHT UNLY
IF（NYEAF＝NIW） $27.30,20$
I？OU J＝1．4
Mn 50 K 31.4
If（NYEAR－NTINWT（K，J））31，32，32
LF（NYEARONTIMMT（K，J）） 33.34 .34
HFUFJ，K）ECFリE［（K，J）
GO TO 50

Gก rn 35

MFURU（K）ECFUFL（K，J）＊（0．575／nUMMY＊＊0．47076月

CONTJNHE．
CALCUI ATE EFFECT MF TECMAIUCOTCAI，DDTIOIS AMN SAFR，TY AND EA1SSIOM REGHLATPONS ON H！FI．CIJSUMPTINH
DuMi Y＝ 0
DO to 1 TOEq。NnPT

AVblleten
（1） $11 x=1.4$

HYP（IAV（J）$=0.0$
门ก $90 k=1.1$
HYFUAV（ ）玉HYEOAV（J）\＆HFUEI（K）WXCPMIX（K，J）

NIPll SIAMDARI）SET
JF（AVFlHLOAFFS） 73.42 .42
NG HIX CMANCF
Dก $91 \mathrm{k}=1.4$

（G）T1） 6 ○
CAICUIATE ATX CHAMCH

$9+C$ CM X $X(3,1) \neq R F!F F L(4)$
CいAGGF ©CHANCH 小川N

COMT1NひH
RFTURN
27 FFTHRN 1

CAPINEO
CAFUPEO

CAUITAL CDST MF PAPL.FME UIAC: IKCHNHLOGTCAL NDTIGAS FOK

9*PHESAL(I)) ECCOST(1TU)
(1) $77 \mathrm{~K}=1.4$
C
Capltal Cos'r piok nowasizurg
IF (AYYAK—RTINwT(K,J)) 72.71.75

(in in 72
75

1F (1) (14ty) $72.7 \% \cdot 175$

C CAPITAL. COST FIH MAIFRTAI, SHASTITITIMB
! 176 K日ง。1

77


```
```

 0%200, I=1.4
    ```
```

 0%200, I=1.4
 THCOSTEn
 THCOSTEn
 1ACOSTmO
 1ACOSTmO
 In <n\ k=1.1
    ```
```

 In <n\ k=1.1
    ```
```



```
    IF(NYFAF@MTJMATT(K.J) )20\downarrow.2015,2115
```

```
    IF(NYFAF@MTJMATT(K.J) )20\downarrow.2015,2115
```



```
    Gre 10 200
```

 Gre 10 200
 WTミNTいN(K.|)
 WTミNTいN(K.|)
 Gri 1п 2nb
 Gri 1п 2nb
 w1\equiv#TMTP(K, 1)*1.07407
    ```
    w1\equiv#TMTP(K, 1)*1.07407
```



```
    CON:1 [a|lt
```

```
    CON:1 [a|lt
```



```
        D(: 207 TTilel, v|⿴FT
```

 D(: 207 TTilel, v|⿴FT
 TACOSTETACOST+ACHST(TTU)*THCHRIP(1T0.T)#SALFF.%)
 TACOSTETACOST+ACHST(TTU)*THCHRIP(1T0.T)#SALFF.%)
 TVAKCOC.N=THCCIST+TBCOST&TACOST
 TVAKCOC.N=THCCIST+TBCOST&TACOST
 CNHIINLIF
 CNHIINLIF
 RETURN
    ```
        RETURN
```

```
    SUHROUTHNE FRICP (#,NPRICE,AYEAR,NWRT,FSALE,FSIZF,XNPMIX,
    9SALECUKORC,ACTPRC,AVPRC, 'TSALE,ACTMIX,XMKTMX)
    DIMENSICN XMKTMX(4),CURPRC(4),ACTMIX(4),ACTPRC(4),OLDCPM(4),
    SACTCPM(4),SALE(4),FSIZF(今),XNPMIX(4,4), DUMMIX(4),DUMCPM(4)
    R&&L K1,K2,K3.*4
    CNNSTEO@N゙ONO1gU5117
98
    READ(NPRICE,92,FRRREQ3)NOW,XMKTHX
    POHMAT (1,AE)
    1P(GYEARONOW)93.94.94
    1)N y0 ke1.4
    ACTHIX(K)gFSALF,#FSIZF(K)
    D0 Y5 Jsi,a
    ACTMIX(K)GACTMIX(K) & XHPMIX(K,J)#SAlEE(J)
30
9 0
    ACTMIK(K) \XiACTMIX(K)/TSALE
    OIUCPN(1) &N.1fN46&20+CURPRC(I)#CONST
    OLDCPM(2) w!.13307148+CIRPRC(2) #C(INST
    UINCPM(3)E0.124391)9+CURPRC(3)#CONST
    OL.ICPN(A){O.1076OQI +CURPRC(4)|CONST
    K\as(),DCFM(1)M(XMKTMX(2)+XMKTMX(3)+XMKTMX(4))/(OLDCPM(2)
    9*XMKTMX(2) +(I,DCPM(3)*XMATMIX(3)& OLDCPM(1)#XMKTMX(4))
    K1:XMKTMX(1)*(KIM#g.94707)/(1.00XMKTMX(1))
```



```
    Q#XMKTMX(1) +तI,DCPM(A)#XM&IMX(3) +ULDCP4(1)#X:1K1MX(4))
```



```
    9XMKTMX(4))
```



```
    9#XMKなMX(?))
```



```
    Kaz(Of,UCPM(4)/OLOCPM(3))**11.4101
    K4 EXMKTMX(4)苜年/XMKTIAX(3)
    NUPNMFRES1%
    CE|.7
    CIfS=0.1
    N|M=7
    EFFMPAE10%!0)
    DC! 46 N|IMHE1, R11M
    n(1)0% K=1.1
    DHMN|x(K) #^CTMIX(K)*C
    D|MCPM(4)=OINCPI'(4)
```



```
    D|NCPM(3) Z[|MCFM(1)/ALPHAS
```



```
    THFTAA=TWFIA&/(ALDHAD*|HFM| (1))
    D|MCPM(?)=(THFTG&OIHFVGA)/(INFTA3-THFTA!)
    DUMCPM(1) = [UFTAZ゙+VHETA1*||MCPN(7)
```



```
    9+OJMMIX(2))
```



```
    9(||MM|X(3)&0|MM|y(t)))
```



```
    90!MM(X(4))#K3))**(-1.0/2.75703)
    IF (FRK(7H)749,45!),951)
```



```
950 IF (FRHOKGFRRMIN)98,7n,9%
98 ERFMINEFRROH
    CMIN=C
    DO 99 K=1,4
    ACTCPM(K) =U|MCPM(K)
99 C=C+CTNC
    1F (NIIMRFR) 4O1,901,002.
902 C=CM|N-0).つR
    C1+C=O.005
    N1!N=37
```



```
    GM In 900
901 AC「PPC(1)=(^CTCPM(1)-(1.14(1A&H2ん)/C\NST
    ACTPHC(?) =(ACTCFA(7)-1.133n719H)/C|AST
```



```
    !)!M!AYE|.0
    (ओ) y@l K=1.1
991 N|MNY=DHM.AY&ACTM!x(%)MAC'IVPC(ト)
    In g.g) k=1.!
992 ACTFLC(K)=AVPRC*ACTFWC(K)/HHP&.Y
    RFT|IOP
93 NETHんNN I
```



```
9.CANFE(t)
```



```
    SUHFOUTINE PRNFRM (J,NWRT, XMPMTX,ACTPPC,SNA,DIV,BALE, RYD,
    9XMHR,RET, OTHTAX,DEP, AMORT, EATHST, TVARCN,TAXRAT,CADPE,
    9ANNI,NH, ANNMNE, ANNTOL,DF,HT,NY
    9EAK,FUJITY, OTHCAP, AE.TPRO,HVLNB,BVMNE,
    98VTOIL,,IPR,JPF,ISIJM,ACTMIX,XMKTMX,NFND,IDET,
    9SIMDF,H,SIMRFT,SIMPHO,NT,HYPIAV,SIMHYP)
    DTMENSION XNPMIX(4,4),ACTPMC(4),SNA(4),RNO(4),XMRR(4),HF,T(4),
    90THTAX(4),TVARCD(4), TAXRAT(4),CAPFE(4),ANNLNH(4)
    9,ANNMNF(4),ANNTOL(1),DEH1 (4), EQlITTY(4),OIHCAP(4),RETPRO(4),
    9BVLINA(4),AVMNE(4),HV'ROIII (4),SALE(4),IPH(4),JPR(4
    9),1SIM(4),RFVNUE(4), ATPAFT(4),CADINV(4).
    9CSHFIO(4), XDERT(4),XREPPR(4),HRFAK(4), XSAI,F(4), XHREAX(4)
    9,ACTMIX(4), XMK\MX(4),SIMDEF(100,4),SIMMET(IDO,4),SIMPRO(10(),4)
    9,HYPMAV(4),SIM.HYP(100.4)
    REV诋(J)=0
    Z=门.78
    DO ROO K=1.4
    REVN(JF(|) =REVNUF(!)+XNPM1X(K,J)*ACTDRC(N)*Z*SALE(|)
    Z=Z}+0.0
    G0T0 (5001,5002,5003.5004)J
5001 SNA(J)E3.352EA+1.75H-2*RFVNIJE(N)
```



```
    XMRR(J)=2.RPGFP+4.529F=2#RFVI!HF(J)
    Gn rO 5005
    SNA(J)=3.974FR+6.42hF-3#HFVNUF(J)
    RN\cap(J)=-97.07E6+3.8の5E゙- 2*KF゙VNUF゙(J)
    XMHF(.J)=1.50UFY+1.754E-2*HFVNIE(J)
    GO TO 5005
```



```
    IF (,JPH(J)) NGT,品O,&\I
```

5003

Conil muf
(G) TO 名DO

(in) In g:Is
WHIVF ("m@T。HGつ)

(in 111 hle
Wम1Tら, (NWRT, R53)

GU In \& OnS
WHITE (WHTOHGA)
fork'AT (141.3いx。"AnC•)

$x=1 \operatorname{vanCl}(1) / 1$, Ur.n

x_{1} zSNA (1)/1.01Fn
*)=rivi)(1)/1。uFn

x4EFFR (1)/1。nHm
OFP=1)FF/1, OFn

FIXCCSEFIXCOS/1."Ha
HNTHSTEF゙iTRST/1。いHの

$T \wedge x=T A x / 1.00^{5} h$

PHFTAXEDWF:TAX/1, OF,

If (F,NTHST)ROG.NOT, HOT
WRTTE (NWRT, RER)FりTRST

WHIIF (NWHT, 859)FIXCrs
HOWMAT(T45,F1(i.1)
IF (FNTHST)HOR,HOG, HOG
WIIIF (NART, BGO) (IPKIFT, IAX,ATPRFI(J)

(in TO WIU
FATRSTEOENTRST

9•1NCいMF. 「AX•, T45,FIO.1/T3. NET INCUME•, 「45,F1i.1)
WHITF: (NWRT, AG?)NYEAF

(;) 1 ก H ?

$x=$ - CSHト1 () (.1)

1F (CSitFl (1)) \&42.843.H33

$x=$ - ATPHFT(J)

WFITF (AWHT,fin7):NYFAR

WRITF, (NAHT, \&69) X2, XHEHT(J)

1F(X1FFTトH(J))R26.427,427

9, T50, F 10.1)
XGEーXNFRT(J)
WR1TF, (WWHT, ब71) X3, XS, X6

TกTAI, EX4 + XHFTPR(I)
WKITビアNWHT, タフ?)TリI゙AL, rOrAl。

GO 10 H3O
WHITE(NWRT, 973)
POKMAT (DFHT AND KFT LNCOMH HFGGTIVE*)
GOTO 月GO
IF (XRETPR(1))R28.829.870

InTA!, EXA + X OF\&T(J) + X RETPH (J)
WHITE, (NWHT, 275)TOTAL, TOTAL

Gr: Tri R90

1F(IS!l4(1)=99)832.833.437
い口 if $_{1} \mathrm{l}=1,11$

C!!!!!!UE.
(or In H3O

N1:16 (404T, 470)

1) 13のつ $J=1.1$

RFP rlita!

```
    SUHF|HTTMF SIMML,A (H7[AEgMRHAY,F゙HAIO,FHAD5,FPA51),
    9ドNA75,Fr^の年)
    DJMINSIOM ARRAi゙(IOO)
    NCUMENTTMF=1
    I)N OOnO ITK=1,NTIMF
    |\cap (#)OU ,|K=1.ND(IM
```



```
6001 LOMEAPHAY(,IK)
    ARKAY(JK)=ADRAY(IK+1)
    APWAY(JHF+1)=0|H*
6000 CONI|!!1F
    N&"まサで\M上#0.!
    Nう5=NT!紒*.05
    はちいまい「|Nト.5
    Nノく玉心T|M**.75
    NQ|ENTI采F."
    HFA10=ANHAYPN1(0)
    ド生5&APWAY(H2G)
    &FAS!=ADMAY(NGO)
    &FA75=ARM\Y(N75)
    &KAOn=A゙HAY(NOO)
    RF||FA
```


APPENDIX \mathbb{E}

REFERENCES

1. Corporate-Tech Planning, Inc., "Automobile Manufacturing Assessment System," submitted to U.S. Department of Transportation, TSC, February 1977.
2. Abernathy, William J., The Productivity Dilemma (forthcoming, John Hopkins University Press).
3. Bureau of International Economic Policy and Research, "The Automobile Industry in 1976: An International Survey," August 1977.
4. Bureau of International Economic Policy and Research, "The Automobile Industry in 1974: An International Survey," April 1975.
5. Kakushiji, "Dynamics of Policy Interventions: The Case of the Government and the Automobile Industry in Japan," Doctoral thesis, MIT, May 1977.
6. Wharton EFA, Inc., "An Analysis of the Automobile Market: Modeling of the Long-run Determinants of the Demand for Automobiles," prepared for U.S. Department of Transportation, TSC, February 1977.
7. U.S. Department of Transportation, "Rulemaking Support Paper concerning the 1981-1984 Passenger Auto Average Fuel Economy Standards," NHTSA, July 1977.
8. Whorf, Robert P., "Manufacturer Policies Concerning Average Fuel Economy Standards," Report prepared for DOT, July 1977.
9. U.S. Department of Transportation, "Data Analysis for 1981-1984 Passenger Automobile Fuel Economy Standards," Summary report and Documents 1-4, NHTSA, February 1977.
10. Jet Propulsion Laboratory, Should We Have a New Engine, August 1977.
11. Monthly Progress Reports by H H Aerospace Design Company, Inc., prepared for DOT/TSC under Contract No. DOT-TSC-1333.
12. "1977 Automobile Prices," Council on Wage and Price Stability.
13. U.S. Department of Transportation, "Disaggregated Financial Data and Analysis for the Domestic Motor Vehicle Manufacturers," TSC, July 1977.
14. Abernathy, William J. and B. S. Chakravarthy, "Assessment of Effectiveness of Past Federal Actions Intended to Bring About Changes in Automotive Technology Having Substantial Public Benefit."
15. Annual Corporate Reports.
16. Industry Reports From Appropriate Brokerage Houses (e.g., a report by Ronald A. Glance of Pain, Weber \& Mitchell, Hutchins).
17. Investment and Trade literature.
18. Mitchell, Hutchins, Inc., "Automobile Industry Report: October," October 1977.
19. U.S. Department of Transportation, "Historic (1971-1975) Cost-Revenue Analysis of the Automobile Operations of the Major U.S. Automotive Products Manufacturers," R. Kaisar, TSC, April 1976.
20. 10K Reports and Annual Reports issued by the manufacturers.

21 U.S. Department of Transportation, Report by the Task Force on Motor Vehicle Goals Beyond 1980, 1976.
22. U.S. Department of Transportation, "The Impact of Federal Regulation on the Financial Structure and Performance of the Domestic Motor Vehicle Manufacturers," by Martin Anderson and Jos:ph Blair, May 1978.

APPENDIX \mathbf{P}

Report of New Technology

This study develops a risk analysis model of the automobile industry in order to assess the impact of the Automotive Fuel Economy Standards (AFES) on each manufacturer in the industry. The study makes a methodological contribution by illustrating how to analyze a rather complex situation characterized by uncertainty by applying risk analysis. In the context under study, various pieces of data, mostly drawn from several different reports written or sponsored by DOT, are used to analyze the impact of the AFES on the automobile industry. The results yield some insight into what the probable impact of the AFES will be.
Form DOT F 1720
FORMERLY FORM DO M－Mr y
$\sqrt{40}$
SIS人TVNV
$\exists A I L(ふ ぃ い L I V$
－イコluvaと
100

OOE: 'zsח 3IVAIYd YOA HLTVN3d
sS 3NISNE TVIJIsyO

notlvigodsnvil jo ingwlytajo sin
OIVA 3331 ONV 3פVISOd
(1)

[^0]: * Warranty risk has been excluded from the analysis since it was not possible to find any data on warranty costs. However, given such data, it is fairly simple to introduce warranty risk into the analysis.

[^1]: * Warranty risk has been excluded from the analysis since it was not possible to find any data on warranty costs. However, given such data, it is fairly simple to introduce warranty risk into the analysis.

[^2]: Source: "Rulemaking Support Paper" ${ }^{7}$ *(TCLU)

[^3]: *These figures are for North American passenger operations only and are based on "The Impact of Federal Regulation on the Financial Structure and Performance of the Domestic Motor Vehicle Manufacturers," U.S. Department of Transportation, May 1978.

